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EXECUTIVE SUMMARY 

 

One promising solution to road fatalities is the Automated Driving feature, as they would 

eliminate human error in driving. However, these automation features are designed to work 

in specific conditions only, referred to as Operational Design Domain (ODD). If the ODD 

conditions are not met, the vehicle will not act and assist the driver. Both, vehicle 

manufacturers (OEM) and Road Authorities (RA), are striving to ensure that vehicle remains 

within their ODD conditions. While the vehicle manufacturers do so by improving the design 

of these automation features, the Road Authorities are investigating what steps can be taken 

to ensure the road infrastructure readiness for these features. However, unlike vehicle 

manufacturers, the Road Authorities have limited access to vehicle technology, which 

incapacitates them to assess the infrastructure readiness and limit their dialogues with other 

stakeholders. 

 

This research investigates one of the automation features, Lane Keeping System (LKS), a 

system that keeps the vehicle within lanes by applying a steering correction to the vehicle 

whenever the vehicle is at the risk of leaving the lanes.  

 

The main objective of this research was to develop a methodology to assess the road 

infrastructure to ensure the safe operation of vehicles equipped with Lane-Keeping System 

(LKS) and to help Road Authorities to make informed decisions. A three-fold approach was 

taken to realise the project objective. First, the factors related to the road infrastructure and 

environmental conditions that affect the performance of LKS were identified. Second, it was 

investigated how the LKS performance can be used to assess road infrastructure readiness. 

Third, a tool is built to extend the developed understanding to the vast road network, identify 

the hotspots where LKS can fail, and calculate the different Level of Service (LoS) provided by 

the infrastructure for LKS. 

 

The approach taken to solve the problem is based on analysing the dataset collected through 

a practical study. Two different OEM vehicles, vehicle X and vehicle Y were tested on different 

inter-urban roads in different weather and lighting conditions. The vehicles were chosen in a 

way to get a range of performance in Lane-Keeping System (LKS), thus helping to assess the 

road infrastructure better. During the test, the vehicle’s LKS performance was measured by 

its ability to detect the lanes (Machine Vision performance) and its ability to position itself 

safely within the lanes (Lane Positioning performance). In addition, the road geometry and 

environmental condition in which vehicles were driven during the test were also 

simultaneously measured. This included recording information such as visibility of the lane 

markings, lane width, sharpness of the curves, type of line-markings (continuous/dashed), 

weather and lighting conditions. 

 

Statistical analysis is then carried out to understand the impact of the various factors on the 

performance of the Lane-Keeping System (LKS). It was found that vehicle X detected the lanes 

unaffected by the encountered driving conditions; however, several factors affected the lane 
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detection performance of vehicle Y. First, it was found that vehicle speed above 80 Kmph 

resulted in better lane detection. Second, it was found that the dashed line-markings 

compared to continuous line-markings significantly decreased the lane detection 

performance. Further, the wet road conditions also severely lowered the lane detection 

performance. In addition, the lane detection was significantly less during the daytime as 

compared to night-time. Finally, the vehicle could not detect the lanes for the lanes with a 

width below 3m. 

 

The lane positioning performance was affected by line-markings, the lane's width, curved 

sections, weather and lighting conditions for both the vehicles. It was found that both vehicle 

had opposite behaviour for a different type of line-markings. For example, when both right 

and left markings on lane were continuous, the vehicle Y positioned itself closest to the lane 

centre. In contrast, vehicle X positioned itself towards the far left as compared to another type 

of line-markings. It was found that both vehicles failed to execute sharp curves with a complex 

profile. The lane positioning performance was found to be significantly better in dry weather 

and night-time.  

 

The hotspots where Lane-Keeping System (LKS) failed to perform in the network were 

identified for both vehicle X and vehicle Y. Further, the Level of Service (LoS) is calculated 

based upon the LKS performance. The Level of Service was calculated to understand road 

infrastructure readiness for the LKS and how the current Automated Vehicles interact with 

the infrastructure. Finally, a learning algorithm (prediction model) is built on the collected 

dataset. The experiment identified the hotspots and Level of Service for only surveyed 

network; however, the finding can be extended to a broader network of the road using this 

developed learning algorithm. 

 

This research can help Road Authorities have an insight into the vehicle performance, enabling 

them to know how the current Automated Vehicles interact with the infrastructure. In 

addition, Road Authorities can use the results to identify the hotspots resulting from specific 

types of interaction amongst the road infrastructure and driving conditions that could have 

otherwise gone unnoticed. Finally, the results will help Road Authorities have better dialogues 

with the vehicle manufacturers, thus bringing synergy amongst them working towards the 

safe operation of Lane-Keeping System (LKS) and reducing road fatalities. 
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GLOSSARY 

 
 

Contrast Ratio 

The contrast ratio is the ratio of the difference between the 

retro-reflection of the line-markings and the road surface 

to the road surface. 

  

 

Confounding Variable 

An extraneous variable that influences both the supposed 

cause and the supposed effect in a relationship under 

investigation. 

  

Lane-Keeping System (LKS) An automated system that keeps the vehicle within the 

lane. 

  

Machine Vision (MV) 

performance 

The ability of the Lane-Keeping System equipped vehicle to 

detect the lane on the road. 

  

ODD Set of conditions in which an automated system (like Lane-

Keeping System) is designed to operate correctly. 

  

OEM The vehicle manufacturer is referred to as OEM in this 

report. For example, Vehicle Y or Vehicle X. 

  

 

Retro-reflection 

The retro-reflection is the portion of the incident light from 

a vehicle’s headlight reflected back towards the eye of the 

driver of the vehicle after falling on the road-surface. 

  

Road Authority (RA) The agency responsible for maintaining and designing the 

road infrastructure. 

  

Significant Results The results that are likely to not caused by chance for a 

given statistical significance level. 

 

 

 

It is important to note the acronyms LKS, MV, ODD, OEM, and RA, as these are frequently used in the 

report. 
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1 INTRODUCTION 

1.1 Background 

Globally 1.35 million people died in 2016 due to road accidents, and between 20 and 50 million 
sustained non-fatal injuries [1]. Compared to the global situation, Europe is doing relatively well in 
tackling the problem of road accidents. It has the lowest death rate per million population but still lost 
2,600 people on EU roads in 2019 [2]. Road accidents are also not economically sustainable. The 
European Commission estimates a loss of € 82 billion due to road accidents in Europe in 2018 [3]. The 
decrease in the number of road fatalities in Europe has stagnated in recent years, but the EU has 
reaffirmed to move close to zero deaths by 2050 ("Vision Zero") [4]. 
 
One of the promising solutions to road fatalities is Autonomous Vehicles (AV), as they would eliminate 
the human error in driving, which alone is responsible for 90% of road accidents. There are six levels 
of automation, ranging from no driving automation (level 0) to full driving automation (level 5) as 
defined in SAE J3016 [5]. The arrival time of Level 5 self-driving cars is very uncertain, and various 
studies estimate that Level 5 vehicle will be on-road somewhere between 2040-2070. Currently, partial 
driving automation is possible, and vehicles are increasingly equipped with these automated features 
promising to reduce road accidents. The European Commission also consider driving automation as 
one of the steppingstones to ‘Vision Zero’ and has regulated that by 2022 it is mandatory for the 
vehicles sold in the EU to have a defined set of ADAS (Advanced Driver Assistance Systems) features 
[6]. Furthermore, the Dutch national government aims to lead in driving automation and prepare the 
Netherlands for its implementation [7]. 
 
However, it should be noted that partial automation is designed to work in specific conditions only, as 
defined by the vehicle manufacturer (OEM) and referred to as Operational Design Domain (ODD). If 
the ODD conditions are not met, then the driver is expected to take back the control, and the vehicle 
will not be able to act and assist the driver. The Euro NCAP’s recent evaluation of assisted driving 
technologies was also based on the well-defined ODD conditions [8]. Therefore, ensuring that the road 
infrastructure meets ODD conditions will ensure the performance of the ADAS features. Furthermore, 
knowing beforehand where these ODD conditions are not met can help warn the driver timely to leave 
sufficient time for the driver to react. Thus, road infrastructure can play a crucial role in ensuring safety. 
As technological advancements are made towards the Level 5 vehicle, heading towards 5-star roads 
can ensure zero death [9]. 
 
This thesis focuses on the infrastructure requirements for one of the driving automation system, viz. 
Lane Keeping System (LKS). An LKS keeps the vehicle within lanes by applying a steering correction to 
the vehicle or warning the driver whenever the vehicle is at the risk of leaving the lanes.  
 
The LKS feature can help to reduce any accidents linked to run-offs and cross-over if the required ODD 
conditions can be ensured. Today, most OEMs use Camera Vision to see the lanes ahead and may not 
work if road lane markings are non-existent, non-compliant, worn out, obscured, inconsistent or 
confusing. The sensors may also not be able to read the road ahead due to the number of 
environmental factors such as adverse weather conditions and inappropriate illumination, which are 
also difficult to predict. Activating LKS in such situations or delaying the warning to take over control 
from the system can lead to accidents. The Road Authorities (RA) are investigating the steps to ensure 
the road infrastructure readiness for these features. However, unlike vehicle manufacturers (OEM), 
the Road Authorities have limited access to vehicle technology, which incapacitates them to assess the 
infrastructure readiness. 
 



 

 2  

The importance of road infrastructure has increased because the EU has mandated the new ADAS 
features from 2022. This regulation is expected to make the roads safer; however, it also says that 
‘’Advanced emergency braking systems or emergency lane-keeping systems might not be fully 
operational in some cases, in particular, due to shortcomings in road infrastructure’’. Nobody would 
like to be in such a situation. Who takes responsibility in such situations has been already a topic for 
discussion for a long time. Research needs to be done to see the possible steps to ensure the safe 
operation of such ADAS features. 
 
1.2 Problem definition 

The problem is that, like many ADAS features, LKS has limited ODD. Currently, there is no complete 
and exact measurement of this limited ODD, such that it can be quantified and put in the form of 
actionable guidelines by OEMs for Road Authorities (RA) to improve the road infrastructure. Also, due 
to competitive reasons, the ODD limitations of the vehicle are not published in detail by the OEMs, 
which incapacitate the RAs to assess the road infrastructure for automated driving readiness. The 
roads were designed primarily focused on the human being as the driver. As the penetration of the 
automated vehicle is increasing, the RAs are concerned if the road infrastructure also needs to be 
adapted. However, unless and until RAs have the quantified information of ODD, they cannot know 
what changes need to be made in the current road infrastructure to ensure the safety of automated 
driving. 
 
Now, why it is so difficult to define the ODD for LKS (or for any other ADAS). To understand the 
problem, it is first required to understand the definition of ODD, defined in SAE J3016 [5] as  
 
“Operating conditions under which a given driving automation system or feature thereof is specifically 
designed to function, including but not limited to, environmental, geographical, and time of day 
restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics.” 
 
The environment, geographical, and other characteristics highlighted in the definition contain infinite 
objects and unmeasurable infrastructure settings, which lead to the possibility of infinite situations 
(Figure 1). The road conditions will always keep on changing, which will cause the system to behave 
differently. The conditions can vary due to the changing weather leading to change of illumination, 
changing traffic leading to occlusion, change in the condition of the lane markings due to normal wear 
and tear by the moving vehicles and many such other factors. The dynamic environment is one of the 
reasons that why it is so difficult to measure it. Second, the system is challenging to model due to its 
complexity, primarily if it is governed by Artificial Intelligence (AI). Therefore, the most common 
approach of White Box Modelling cannot solve the problem. 
 

 
Figure 1 Challenges for Automated Driving 

The other problem is that even if the ODD conditions are known completely, amidst such a vast road 
network, it is complicated for a road authority to know which sections of the road are not providing 
the required ODD for LKS.  
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1.3 Research Objective 

The main objective of this research is to develop a methodology to identify what changes need to be 
made in the road infrastructure to ensure the safe operation of the vehicles equipped with Lane 
Keeping Systems. 
 

1.4 Research Question (RQ) 

Following the problem definition and the project objective, the main RQ for the thesis is: 
 
How accurately can the Operational Design Domain (ODD) of the Lane-Keeping System (LKS) be 
determined using the empirical analysis of the data collected from the field tests? 
 
Sub questions: 

1. Which factors related to the road infrastructure and environmental conditions affect the 
performance of Lane Keeping Systems?  

This RQ will focus on identifying the correlation between the driving conditions and LKS performance. 
 

2. How can the Lane Keeping Systems performance be used to determine its Operational Design 
Domain? 

This RQ will investigate LKS performance when the system is within and when the system is outside its 
pre-defined ODD. 
 

3. How to identify the hotspots in the given road infrastructure conditions that are outside the 
Operational Design Domain of the Lane Keeping Systems? 

This RQ will explore extending the identified relationships between various parameters to the 
predictive context.  
 

1.5 Outline of the report 

Chapter 2 summarizes the studied literature to understand the relevant concepts and methodology to 
answer the research questions. Chapter 3 explains the methodology of this project to realize the 
project objectives. The shortlisted variables and the performance metrics for LKS are also presented.  
 
Chapter 4 then explains how the test route and testing conditions were selected to ensures sufficient 
variation in the research variables while collecting the dataset for analysis. Finally, the experiment 
setup description is given, and it is explained how driving sessions were conducted.  
 
Chapter 5 explains how Deep Neural Networks (DNN) were used to detect the dashboard signs and 
measure vehicle position inside the lane using the video data from cameras. It also explains how the 
data from different sources were synchronized based on the GPS and timestamps of the video to come 
up with the final dataset in one file. 
 
Chapter 6 presents the data analysis and results of this thesis. First, it explains the statistical test 
results, which were done to investigate the factors affecting the performance of LKS. Second, the 
chapter explains the calculation of the Level of Service provided by the infrastructure for the LKS. 
Finally, the chapter ends by explaining the developed LKS prediction models. 
 
The obtained results are further discussed in Chapter 7, and conclusions are made in Chapter 8. The 
recommendations to Road Authorities also presented in Chapter 8. Finally, the report ends by 
explaining the limitations of this project and giving recommendations for future research in Chapter 9. 
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2 LITERATURE SURVEY 

The main RQ was to assess the ODD of LKS using empirical analysis of the data, for which an experiment 
must be conducted. It was imperative to collect the correct data and quality data because this cannot 
be fixed once the experiment is done. Thus, the Literature survey became a vital part of this research. 
First, it was crucial to understand the recent development in the LKS algorithms (section 2.1). Second, 
it needs to be investigated which parameters related to the physical infrastructure should be measured 
to evaluate the line detection performance of the vehicle (section 2.2). Third, how to measure the lane-
keeping ability of the vehicle and again, what are the existing standards (section 2.3)? Finally, to not 
miss any critical variable which could have been otherwise possible to be measured with minimal 
efforts, a thorough study was done on previously conducted studies (section 2.5). 
 

2.1 Lane Keeping System (LKS) 

It is essential to understand the variation in the existing LKS algorithms to understand the complexity 
of defining the Operational Design Domain (ODD) for LKS. Thus, the ideal case for any research focused 
on determining the ODD of LKS would be to know the LKS algorithm being used by the OEMs. However, 
due to security, safety, and competitive reasons, these are not known to the public. However, a 
glimpse of technological advancements in academic research related to LKS can also help estimate the 
complexity of the difference in requirement by the different LKS system.  
 
The most common sensor for LKS that can be seen in all OEM vehicles is the camera. Xing et al. [10] 
reviewed the vision-based LKS and found two most common approaches used for lane detection: 
traditional computer vision (CV) and Deep Learning (DL). The CV-based algorithm uses image 
processing, feature extraction, lane detection, and tracking. The DL-based algorithm first trains the 
DNNs (Deep Neural Networks) on a dataset and then uses them to detect the lane markings. The CV 
based algorithm is computationally efficient as compared to DL but at the same time can fail to detect 
lines in a various difficult situation such as curves. 
 
Chen et al. [11] presented an end-to-end learning approach for calculating the required steering angle 
by training the Convolutional Neural Networks (CNN) on a dataset of raw images, thus skipping the 
manual efforts of image processing, path planning and control logics. Also, since these models are not 
trained explicitly to detect, for example, lane markings, they can work not only on highways but also 
on local roads with or without lane markings. 
 
LKS algorithm might also use other sensors such as LiDAR, IMU combined with GPS, and digital maps. 
Bar Hillel et al. [12] studied the different sensors and algorithms used in lane detection and built a 
generic model as shown in Figure 2 to understand LKS better. The different existing algorithms can be 
mapped to subsystems of this generic model.  
 

 
Figure 2 Generic model explaining different LKS algorithm [12] 
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Lombard et al. [13] developed a path following algorithm only using the GNSS positioning and 
demonstrated path-tracking tests on the ITS World Congress 2015 site in Bordeaux on both straight 
and curved path. They were able to achieve an error of less than 30 cm in lane position. 
 
Choi et al. [14] developed a RADAR based lane estimation method using Deep Neural Network (DNN). 
The RADAR data of relative motion between the ego vehicle and a leading vehicle was combined with 
the in-vehicle sensor data to estimate the road lane model for LKS. Kim [15] demonstrated through the 
field test a lane detection rate of up to 94% only using the RADAR on the road with metal lane markers. 
 
This section concluded that there is ongoing work in developing LKS using computer vision, end to end 
learning, LiDAR, RADAR and HD maps. The advancements explain that the technology of LKS is evolving 
rapidly, and it is challenging to decide on infrastructure changes based on a particular technology of 
LKS. The scope of this thesis is limited to vision-based LKS; hence, only these are focused on after this 
section. However, the understanding from this section gave an excellent ground while proposing any 
road infrastructure changes to be made by Road Authorities (RA). Also, it explains why it is challenging 
for RAs to make any decision owing to the different LKS technologies of different OEM vehicles. 
 

2.2 Machine Vision (MV) performance metrics 

The previous section explained that vision-based LKS relies heavily on the lane markings, primarily the 
CV-based (Computer Vision) algorithms use the contrast between the lane markings and the road 
surface to identify the lane markings. Hence it is also essential to understand that how the quality of 
lane markings can be measured. 
 
The performance (or quality) of lane markings is mainly described by their retro-reflectivity, luminance 
coefficient, contrast, and color. Retro-reflection (𝑅𝐿) is one of the most widely studied performance 
indicators and represents light hitting a surface and reflecting again to the same light source. It directly 
relates to nighttime visibility. It is measured in units of millicandelas per square meter per lux 
(mcd/m2/lux). It can be measured using handheld and mobile retro reflectometers produced in many 
different models by several manufacturers [16]. Most pavement markings have beads embedded on 
the surface to enhance the retro-reflection. A new white lane marking can have 𝑅𝐿 values up to 400 
mcd/m2/lux and may be even higher depending upon the refractive index of the material of glass bead. 
It should also be noted that road surface also has a value of 𝑅𝐿 ranging from 10 to 40 mcd/m2/lux 
based upon the asphalt and ageing of the road [17]. The luminance coefficient (𝑄𝐷) is the ratio 
between the marking material's luminance and the pavement's illuminance. It relates to daytime 
visibility. Both 𝑄𝐷 and 𝑅𝐿 are measured according to the IS EN 1436 European Standard for Road 
Markings [18]. 
 
These metrics have been long studied to understand the visibility of lane markings from a human 
perspective and recently used in many studies to understand the vision-based LKS. ERF in 2012 [19] 
proposed a ‘150*150’ guideline to ensure a minimum performance level of 150 mcd/m2/lux for road 
markings under dry conditions and a minimum of 35 mcd/m2/lux under rainy conditions, minimum 150 
mm line width for all roads. The guideline was based upon the analysis of relevant research, empirical 
evidence, and a review of current regulations in different countries. ERF believed that the proposed 
policy should also be enough to guarantee the optimal operation of LDW/LKS. In 2019, ERF [20] added 
two more points to the “150*150” guideline. First unification of markings across various countries to 
improve the reliability of MV. Second, a minimum contrast ratio of 3:1 between the marking and 
pavement mitigates possible false readings caused by glare. The same guideline has been discussed 
and agreed upon amongst the various stakeholders involving OEMs (ACEA) and appeared in the series 
of report on “Roads that Car can Read” in [9] [21]. 
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SLAIN [22] project to assess the quality of lane markings for the ADS concluded that the 𝑅𝐿 could be 
used as an indicator to assess MV performance. The RL was measured for the stretch of every 50m, 
based on which the Quality Index (𝐼𝑆𝐸𝐺𝑁 =  %𝐴 +  0.75 %𝐵 +  0.50 %𝐶) was calculated for a stretch 
of every 1000m, using table 1. More details will be discussed in section 2.4.  
 

Table 1 Road classification criteria used in SLAIN [22] 

Class A B C D E 

Min RL 160 140 100 80 40 

Max RL - 160 140 100 80 

 
Austroads, in their report [23], surveyed a 25000 km sample of the road network. The survey found 
that the standard of markings in Australia and New Zealand appears to follow “150*150” guidelines. 
In addition, most freeways and highways are currently capable of supporting ADS for lane positioning. 
This section concluded that the measurement of retro-reflection of the pavement markings is a critical 
metric and hence a part of the current research. 
 

2.3 Lane Positioning Performance Metrics for LKS 

The next task was to study the performance metrics to measure the lane-keeping ability of the LKS. 
The SAE J2944 [24] defines the Lateral Lane Position as a distance between the specified point on the 
vehicle to a specified part of the lane. There are three options to measure: A – reference to the lane 
centre, option B – reference to the middle of the driven path, and option C – reference to lane edge. 
The points can be chosen as lateral midpoint of the front axle or centre of gravity on the vehicle. The 
SAE recommends option A for most scenarios and using a right-handed coordinate system, i.e. 
assigning positive sign convention to the lane position measured towards right from lane centre, for 
the right-hand driven vehicle. 
 

 
Figure 3 Measurement of Lane Position using Option C of SAE J2944 [24] 

 

The measured lane position can then be used to measure the Mean Lane Position (MLP) and Standard 
Deviation of Lane Position (SDLP), which are the most used performance metrics to evaluate the lateral 
performance of the vehicle. For many decades, the MLP and SDLP have been in use and still used as a 
restorative measure [25] [26] [27] [28] [29]. 
 
There are other lateral performance metrics such as TLC (Time to Line Crossing), Steering Reversal Rate 
(SRR), Steering Entropy described in SAE J2944 [24]. However, due to the complexity in their 
measurement, they were out of scope for the current project and hence not described in this section. 
For example, Zhou et al. [30] explained the practical challenges faced for measuring parameter such 
as TLC and how the suitability of the metric is lost if an approximated method is chosen for 
simplification. 
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Based on the reviews of practical studies, SAE [24] found that the MLP varies with lighting conditions 
and speed. It suggests expecting an average offset of 5cm to the left in daytime and 12 cm in the night 
for humans. The SAE, based upon more than ten different studies, found the SDLP for regular driving 
to be varying between 20 cm and 30 cm. However, it should be noted that all these values are based 
upon human driving. Green et al. [31] reviewed 36 studies and found the average value of SDLP to be 
18 cm for human drivers. Zhou et al. conducted an experimental study and found SDLP to be 18 cm – 
27 cm [30]. 
 
The EuroNCAP’s latest LKS assessment procedure test the vehicle on an S-bend [32]. The test involves 
no manual input from the driver and repeated at 80, 100 and 120 Kmph. Based upon the observation, 
if the vehicle stays on both curves or one of the curves of the S-bend, a score is given to the vehicle 
under test (VUT). However, there are no specific values mentioned for MLP or SDLP as there is no 
evaluation when the vehicle stays within the lane. Instead, the evaluation only sees if the vehicle stays 
within a lane or not. 
 
After extensive literature research, no study was found to provide a reference value for the MLP and 
SLDP for automated vehicles. A recent study to assess the infrastructure for LKS by Reddy et al. [28] 
assigned the average performance for the human as “High Performance” for the AD. However, these 
thresholds in Table 2 are not based on the performance of LKS. 
 

Table 2 Criteria for LKS performance Classification used by Reddy et al. [28] 

Indicator  High Performance Medium Performance Low Performance 

MLP  <= 10cm > 10 cm, <= 20 cm > 20 cm 

SDLP  <= 30 cm > 30 cm, <= 50 cm > 50 cm 

 

2.4 Previous Research on evaluation of LKS performance 

Neumeister & Pape [33] conducted a field test using three different OEM vehicles, all equipped with 
vision sensors and two with additional RADAR sensors, to study the effect of adverse weather 
conditions on Automated Driving (AD). It was found that the wet or water accumulated pavements did 
not have a considerable effect. However, a small amount of snow covering the line-markings affected 
the AD performance severely. In addition, all three vehicles failed to detect line markings in heavy 
rainfall. The authors also took input from various stakeholders from transportation agencies to 
understand the support they can provide to AD and identified two significant gaps. First, it is unclear 
who is responsible for determining whether the current or forecasted conditions are within or outside 
the ODD of LKS. Second, the weather-related limits of AVs are unknown, as the manufacturers never 
release their detailed limitations.  
 
Carlson et al. [34] studied the effect of retro-reflection (𝑅𝐿) of pavement markings, vehicle speed and 
ambient lighting on the maximum detection distance by the humans in a closed set-up test course, a 
road on Texas A&M University’s Riverside Campus, having a facility of rain tunnel as well. The same 
set-up had been than used in the for exploring the performance of LDW system in 2018 by Pike et al. 
[35] and in 2019 by Stacy [36]. 
 
Pike et al. [35] studied the effects of the wet RL and L of pavement markings on LDW in the night 
continuous rain with and without glare sources. Delta LTL-XL Mark II and Delta LTL-XL handheld retro 
reflectometers were used to measure the 𝑅𝐿 and 𝑄𝐷 respectively. A CCD luminance camera was used 
to measure the luminance of the markings under various lighting and wetting conditions. The sensor 
evaluated was Mobileye which was installed on the Ford vehicle, and CAN signals of Mobileye were 
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decoded to get the confidence score of the lane marking detection. This confidence score was then 
studied as a function of each variable individually by manipulating the experimental setup.  
 
Stacy [36] then followed up on the research using the same setup and sensors to explore if the Machine 
Vision (Mobileye) score can be used for asset management in transport. Thus, the main aim was to see 
the repeatability of the MV quality scores and the correlation of the quality scores to the established 
pavement marking evaluation characteristics. The author concluded that MV scores are not relatable 
to the pavement marking characteristics as the MV technology are not fully known and quantifiable. 
Both the author had tried to approach different OEMs for participation in the study to get the in-vehicle 
data but got no response and hence decided to use Mobileye as it is possible to decode its CAN bus 
data. 
 
Davies [37] examined how retro-reflectivity, contrast, and width affect the MV performance. All of the 
studies mentioned above used a closed setup where different conditions such as glare, shadows, and 
rain were artificially created, allowing the researchers to control and manipulate the variable for 
research. The literature research on these studies gave an initial overview of the methodology, choice 
of sensors, and experiment conduction for data collection for this thesis. 
 
One of the other projects with a similar research methodology to this thesis is the European 
Commission’s funded project SLAIN (Saving Lives Assessing and Improving TEN-T road Network safety). 
The project SLAIN [22] had one of the objectives to assess the CAV readiness of Core Ten-T roads in 
Europe. They involved a pilot study of 2000 km of road across four countries (Croatia, Greece, Italy, 
and Spain). They used the existing TomTom’s MoMA (Mobile Mapping) dataset of LIDAR and 360 deg 
camera. First, to assess vision-based ADS, the imagery-based algorithm was built using the RCNN 
trained on the MoMA data to detect the lines on the road along with their confidence score. The 
second algorithm was based on LiDAR and used the IoR (Intensity of Return) values. They found that 
the main reason for no detection of lines was low lighting conditions and faded lines. The CV-based 
algorithms primarily relied upon the sufficient contrast between the line and the road surface, while 
the DL-based algorithms relied upon consistency and reduced variability. The same project also 
included a 500 Km road survey using the vehicle DELPHI (DELineation Photometric Instrument) to verify 
if the road markings meet “150*150” requirements. Based on the measured values of 𝑅𝐿 , the roads 
were assigned a Quality Index (𝐼𝑆𝐸𝐺𝑁) from A to E (High 𝑅𝐿 to low 𝑅𝐿) and then relation was analyzed 
between the readability of the lines and the 𝐼𝑆𝐸𝐺𝑁. For detected lines, 80.6% of the times road 
belonged to class A while only 4.9% to class E. 
 
The results of SLAIN assessed the readiness of TEN-T roads considering the two type of vision-based 
algorithms (CV-based and DL-based) that are being used for lane detection. However, the actual OEMs 
vehicle performance is entirely out of the picture. They are analyzing the performance of their own 
build LKS algorithm of line detection, which will undoubtedly vary from the actual OEMs and thus, it 
will always leave doubt for the actual readiness of the roads. Second, the same DELPHI survey results 
also show that for the ‘lines not detected’ cases, 37.3% of the time road belonged to class E, but it 
belonged to class A for 47.8% of the time. These results prove the complexity of the problem while 
assessing the roads for AV readiness and the fact that there are so many other factors that need to be 
considered. Hence, a detailed review of the factors affecting the LKS was done before conducting the 
field test. 
 
‘APPENDIX A – Factors affecting the LKS Performance’ lists the various factors affecting the LKS, as 
per the literature review of various theoretical and practical studies. 
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3 METHODOLOGY 

After having a detailed literature survey of the LKS algorithms, performance metrics, previous studies 
and factors affecting LKS performance, the next task was to combine all of this knowledge to develop 
an own state-of-the-art experimental setup for the thesis. This chapter explains the methodology built 
to ensure that the quality dataset is available for the analysis to answer the RQs.  
 

3.1 Overview of the Research Design 

The approach taken to answer the RQs for this thesis is given in Figure 4 and can be explained in three 
simple steps. First, collect the dataset by driving the vehicle in different environment and road 
conditions. Second, use this dataset to analyse in which situations the vehicle could perform and 
where it failed. Finally, use these observations to build an LKS model and check how it performs on 
unseen data. The accuracy of this model will answer the main RQ that how accurately it is possible to 
predict the performance of LKS. However, the fundamental question is how to measure and quantify 
these ‘situations’ and measure the ‘performance’ of LKS.  The ‘situations’ are the research variables 
given in section 3.2, and it is explained how these were measured. The metrics used to measure the 
‘performance’ of LKS are given in section 3.3.  
 

 
Figure 4 Research methodology overview 

 
The conduction of the experiment by driving the vehicle on the decided test route resulted in a dataset 
containing all the ‘situations’ where LKS performed well or failed to ‘perform’. This dataset is referred 
to as ‘Labelled Dataset’ in Figure 4. Labelling the dataset was one of the critical challenges. Chapter 4 
will explain how state-of-the-art tools were developed using deep neural networks to identify the 
vehicle's lane positioning and lane detection state.  The tools made it possible to take measurements 
at a very high frequency of 30 measurements within each second. The fact that the dataset was 
prepared using accurate measurements at high frequency made it possible to accurately use statistical 
analysis and Neural Network architecture-based models to answer the RQs for this thesis.  
 
The dataset is divided into the training, validation, and test dataset. The LKS model based on the neural 
network is trained using the training and validation dataset. The model is validated using the test 
dataset to calculate the model's accuracy on totally unseen data. The prediction model could answer 
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RQ2 by classifying the different LKS performance levels into ODD in and ODD out situations. However, 
later in Chapter 6, it is discussed why the term ‘ODD’ should not be used. Finally, the prediction models 
are used to calculate the different Level of Service (LoS) given by the road infrastructure for LKS. 
 

3.2 Research Variables 

The variables can be categorized into three groups that should be considered ideal for developing an 
LKS model: human, vehicle and environment. However, the human factor is taken out of the 
experiment by instructing drivers not to give any input to steering during the field test. Therefore, this 
research takes into consideration only the last two categories. 
 
Two different OEM vehicles were chosen to understand the difference in the performance of the LKS 
equipped vehicle. The choice of different vehicles will help to conclude if it is legitimate to make 
changes in the road infrastructure based upon the performance of the vehicles. To make this 
conclusion, the best choice of vehicle was to have a range of performance. Hence, the vehicle selection 
was based upon the performance of Steering Assistance as identified from Euro NCAP’s recent 
evaluation in 2020. The results [38] are summarized in Table 3. Vehicle X and vehicle Y were chosen as 
test vehicles and form the first variable for this thesis.  
 
 Table 3 EuroNCAP assessment scores for LKS (Euro NCAP, 2020)  

 
 

The other category of variables that need to be considered was related to the environment, i.e., driving 
conditions. The variables in this category could potentially include the road infrastructure, lighting 
conditions, weather, traffic, and everything else in the vehicle's surroundings. The choice of the 
variables was made based upon the literature research. Section 2.1 helped to choose the variables that 
should have been considered based on the possible technological difference in OEM vehicles. For 
example, the contrast ratio of lane marking can significantly affect a CV-based LKS algorithm but not a 
DL-based algorithm. The findings and recommendations of the previous studies, as explained in section 
2.4, were also used to expand the list of chosen variables. Finally, APPENDIX A – Factors affecting the 
LKS Performance provided further insight while shortlisting the variables and the required sensors to 
measure them. The list of chosen variables is given in Table 4. 
 

Table 4 Shortlisted Variables for measurement 

 
 
 

3.3 LKS Performance Metrics 

The performance of LKS comprises of evaluation of the Machine Vision (MV) performance, which 
represents the ability of the vehicle to detect the lane, and Lane Positioning (LP) performance, which 

Vehicle 
Mercedes 

Benz GLE
Audi Q8

Tesla 

Model 3

BMW 3 

Series

Nissan 

Juke

Ford 

Kuga

Peugot 

2008

Volvo 

v60

VW 

Passat

Renault 

Clio

LKS score (Max-35) 35 30 35 30 22.5 30 30 30 30 27.5

Parameter Sensor 

Type of Horizontal Curve Maps 

Radius of Curvature Maps 

Lane Width Cameras 

Visibility of lane markings Reflectometer 

Lane Marking type (dashed/continuous) Camera 

Contrast Ratio Camera 

Speed of the Vehicle GPS 

Weather and Lighting Conditions - 
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represent how well the vehicle position itself within the lane. The MV performance was measured 
using the metric “percentage of line detection” as the line detection status can be read from the 
vehicle's dashboard screen (Vehicle Information Display). 
 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑎𝑠𝑒𝑠
× 100 

  
The Lateral Lane Position (LP), as shown in Figure 5, was measured as a lateral position of the vehicle’s 
longitudinal centre relative to the lane centre, which is referred to as option A in SAE J2944 [24].  
 

 

Figure 5 Measurement of Lateral Lane Position 
 

The calculated LP of the vehicle was then used to calculate the LKS performance metrics Mean Lane 
Position (MLP) and Standard Deviation of Lane Position (SDLP). The MLP is calculated as the average 
of the LP measured over the defined stretch of the road. The SDLP is calculated using equation 2, as 
defined in the SAE J2944. Both MLP and SDLP were measured for intervals of 30 seconds throughout 
the route. The interval of 30 seconds was based upon the recommendations in previous studies [39] 
[28]. The MLP and SDLP vary between the straight and curved sections of the road, and hence these 
performance metrics were calculated and reported separately for these respective sections. 

𝑆𝐷𝐿𝑃 = √
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 

where, 𝑥𝑖 is the 𝑖𝑡ℎ observation in the total 𝑁 observations and 𝑥̅ is the MLP. 
 

3.4 Justification of Research Design 

The literature research in section 2.4 found that most of the past research assessing the performance 
of LKS has followed the method of Experimental Research, in which one variable is manipulated to see 
its effect on another variable. Unlike those studies, this research follows the correlational research 
method, simply observing and analyzing what is naturally happening without directly interfering with 
it. Undoubtedly, the results from experimental research are more accurate and conclusive as different 
variables are manipulated as per the researcher's choice, and the effect of confounding variables can 
be suppressed. However, experimenting in an open environment and on public roads does not have 
this flexibility. Therefore, the results from this research might be comparatively less accurate; however, 
these results are more practical and valuable to the Road Authorities (RA). 
 
The second thing that requires justification is, how can the driver be left out while assessing the 
performance of LKS, as both the test vehicles are SAE level 2 and supposed to assist the driver and not 
meant to be driven autonomous? The answer to this is that the drive for data collection should be 
viewed as a drive containing many short segments where the vehicle is being tested several times. As 
explained in section 2.4, EuroNCAP test the LKS of SAE level 2 vehicle on the S-curve by keeping the 
driver out of the loop. So, in this research, the vehicle is similarly put to the test but in a continuous 
series and on different road sections. 
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4 DATA COLLECTION PROCESS 

The previous chapter provided an overview of the research methodology and the variables that need 
to be measured for analysis to answer the Research Questions (RQs). This chapter explains that how 
those variables were measured by conducting a field test. 
 

4.1 Test Route Selection 

The selection of a route for test data collection was crucial to ensure that the vehicles are exposed to 
various situations, both inside and outside ODD, to build robust LKS models. However, at the same 
time, there should be sufficient instances for each considered situation to ensure accuracy in the 
results. For this reason, only the provincial roads were focused, and the highways were excluded from 
the study. The provincial roads (N roads) are the non-expressways in the Netherlands.  
 
Second, since the retro-reflection also had to be measured for the same route, it was possible to track 
the same lane lines for N roads as most of them are one lane or two lanes only. So the focus of the 
present study is the Inter-Urban roads, out of the four EuroNCAP defined ODD situation of Parking, 
City, Inter-Urban and Highway for testing ADS [8]. 
 
A route of about 200 Kms of N roads was planned in one of the provinces in the Netherlands 
(confidential). First, the route was previewed using the Street Smart to include varying road markings 
and curves with different sharpness. Furthermore, various parameters such as Lane Width and Line 
Width were also measured to ensure variation in the data. Table 19 shows a sample of these 
observations. Finally, a discussion was also held with the road authority to ensure that the route covers 
various situations based on the age and last maintenance of the road. The route was then updated 
based on their feedback, and sections of the road were added. Figure 6 (confidential) shows the 
decided test route for this study. 
 

 

Figure 6 Final Test Route - Hidden (confidential) 
 

4.2 Vehicle Instrumentation 

The GoPro camera was mounted facing the vehicle’s dashboard screen (Vehicle Information Display) 
to measure the line detection performance of the LKS. The vehicle's position inside the lane was 
measured using the GoPro cameras mounted on the left and right door of the vehicle. Finally, to 
measure the Contrast Ratio, road surface conditions and lighting conditions, a forward-facing camera 
was mounted on the dashboard. The data from the in-built GPS of GoPro cameras were used to 
measure the vehicle speed. For a backup to measure vehicle speed, the GPS logger app was installed 
on the mobile phone of the Vehicle X co-driver, and a GPS connected to the Inertial Measurement Unit 
(IMU) was placed in the Vehicle Y vehicle. The GPS for tracking vehicle location was very critical as it 
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was the key element for synchronizing the reflectometer readings to vehicle performance. The 
placement of the camera and view from them can be seen in Figure 7 and Figure 8, respectively. 
 

 
Figure 7 Vehicle Instrumentation 

 

 

Figure 8 View from the mounted GoPro Cameras in vehicle X (confidential) 
 

4.3 Calibration and Synchronization of the Cameras 

The lane position is calculated using the cameras. The cameras can measure the distance between any 
two points only in terms of pixels; however, to convert the measurement into meters or centimeters, 
it is required to calibrate them. The calibration is a process of estimating the camera's intrinsic and 
extrinsic parameters, which are then used to convert the pixel distance into m or cm. This estimation, 
which is done later during the data processing stage, can only be done if the calibration was done 
beforehand during the experiment. Briefly, the procedure involves holding a checkerboard of a known 
dimension at a known distance from the camera. This procedure also helps to remove the fish-eye lens 
distortion during the data processing stage. However, the GoPro used in the experiment (Black 7 and 
Black 9) has inbuilt settings to change the camera view to ‘Linear’, which takes care of the distortion 
and reduces the efforts while developing code for distance measurement. These steps already ensured 
the accurate distance measurement, but still, to validate the results, a plank with known dimensions 
of the square was placed in front of the camera to verify the readings. Figure 9 shows the whole 
procedure for one session: taking measurements, calibration, and validation.  
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Second, there are four cameras, and all of them need to be synchronized to ensure that for any given 
observations at a given instance, each camera is showing the same observation. For this ‘Atomic Clock’ 
app installed in the phone was shown to each camera (Figure 9 bottom right). Later on, the time 
difference can be calculated, and videos can be synchronized. Last, the GoPro cameras auto-correct 
the colours of the captured videos to enhance their quality [40]. However, this can lead to incorrect 
calculation of the Contrast Ratio due to change in the intensity of road and line-marking pixels in the 
captured videos. Therefore, referring to the manual of GroPro, the advanced settings of all cameras 
were changed to capture the raw images. 
 

4.4 Test Procedure 

The driver was kept out of scope for this study, and hence it was important to ensure that there is 
minimal driver interference but not at the cost of safety. To familiarize the driver with automated 
features, a detailed explanation to operate them was given. They were also instructed to hold the 
steering wheel with gentle hands allowing the vehicle to have control. While testing the LKS, the 
EuroNCAP also instructs the driver to hold the steering wheel in the same fashion [32]. The drivers 
were also instructed to always use the indicator signal before initiating any lane change to distinguish 
between the Lane Departure and intentional lane change while doing the data analysis after the test. 
The co-driver instructed the driver which lane to follow to ensure the correct synchronization with the 
reflectometer survey. 
 

 
Figure 9 Tasks before the start of every driving session (confidential) 

 
On 15th January, three days before the final test, a pilot test of 125 Kms on the final route was 
conducted. The complete procedure as described in the previous section was followed, and the data 
was also recorded. After the pilot test was finished, the recorded data from all the cameras were 
shared with the Data Scientists of RHDHV to note down any changes to be made in the Cameras' 
positioning, orientation, or calibration procedure. Second, a meeting was held amongst the field staff 
to note down what went wrong during the Pilot Test. The outcomes from these sessions were then 
used to modify the previously built SOPs for conduction of test to ensure smooth and successful data 
collection during the upcoming drive. 
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The preparation helped in the successful conduction of the main drive, which was held as per the 
schedule given in Table 5. During the break, data was transferred from Memory Cards to the Laptop. 
After the transfer of the data, the cameras were again calibrated and synchronized for the next session. 
The start of the Day 2 session was delayed by 2.5 hours due to the heavy rain. 
 

Table 5 Data Collection Duration 

 

 

4.5 Retro-reflection Measurement 

The retro-reflection of the lane-markings was measured using the mobile reflectometer mounted on 
a vehicle. The device is capable of measuring the 𝑅𝐿 at average road speed without disturbing the 
traffic. The reflectometer used for the survey was ‘Laserlux 6’. This reflectometer illuminates the lane 
markings using the laser scan at an observation angle of 1.24 degree. It then collects the portion of the 
light redirected (retroreflected) back to the device at a co-entrance angle of 2.29 degrees. This 
observation angle and the co-entrance angle used for the measurement refers to standard CEN 30-
meter geometry in EN 1436. This equipment collects the data at the rate of 200 data points for every 
100 meters [41]. So, for every hectometer, the minimum, maximum, standard deviation, and average 
𝑅𝐿 values are recorded.  
 
The device was first mounted on the right side, and the whole route was covered. The driver was 
already shared the detailed route (Table 20) and instructed to follow the pre-defined lanes on a 
multiple lane road. After that device was mounted on the vehicle's left side, the process was again 
repeated. The survey was done by the contractor ‘Trackline’. Figure 10 shows the vehicle of contractor 
used in the survey with mounted reflectometer ‘Laserlux 6’ of the manufacturer ‘RoadVista’. 
 

 
Figure 10 Reflectometer equipped vehicle for measuring the RL 

  

Starting Time End Time Starting Time End Time

18-1-2021 4:30 PM 6:40 PM 1 hr 30 Mins 8:15 PM 11:00 PM

19-1-2021 12:45 PM 2:20 PM 1 hr 3:14 PM 6:45 PM

Break 
@ FEBO, Alkmaar

Session 1 Session 2Driving 

Date
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5 DATA PROCESSING 

 

“If 80% of the work is data preparation, 

then ensuring data quality is important work of an ML team” – Andrew Ng 

 

The data collected from videos need to be converted into a tabular form for analysis. The different 
observations, such as lighting conditions and weather conditions, also need to be put alongside this 
data. The data cannot be combined straightforwardly because the reflectometer, GPS, IMU and GoPro 
cameras have different frequency of capturing the data. The received information from PNH about the 
road age was in the form of a gdb (geodatabase) file and needed to be merged with the existing 
dataset. This chapter explains how the mentioned challenges were tackled to obtain a quality dataset 
used for analysis. The list of software and programs used is given in Table 21. 
 
5.1 Processing of the Dashboard Camera Data 

The purpose is to read all the signs relevant to the LKS on the dashboard screen (VID) using an object 
detection algorithm in both vehicles. The process is explained by taking the example of Vehicle Y; 
however, the procedure is similar for Vehicle X. There are 11 classes (signs), as shown in Figure 11, 
which needs to be detected for Vehicle Y. 
 

 
Figure 11 Classes (signs) to be detected from vehicle Y Dashboard for data analysis (confidential) 

 

The Deep Neural Network based YOLOv5 [42] object detection algorithm was used for building this 
dashboard sign detection tool. Like any DL model, it also relies heavily on the quality of the dataset on 
which it is trained. The dataset does not just require the number of images but also the quality of 
images, which often require re-training the model. Hence, from the first step, a proper structure was 
followed such that at any stage of development, it is possible to trace back the information for re-
training the model.  
 
The overall process of training the model is shown in Figure 12. The videos were first converted into 
frames using a script written in python. These frames were then labelled by drawing a bounding box 
around each sign and giving each bounding box its true label. For Vehicle Y, 469 frames were labelled 
using 1125 bounding boxes (Table 22). After this, the dataset of the labelled images is divided into 
train, validation, and test set. Labelling the images is a time-consuming process. To ensure that the 
model is trained on a wide variety of images, the training dataset is expanded by using Data 
Augmentation. The data is augmented by varying the dataset's saturation, brightness, and exposure 
by adjusting each of these values from -25% to +25%.  
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Figure 12 Flowchart showing the development of Dashboard Sign Detection model 

 

After this model was trained using Google Colab GPU on the labelled dataset. The model starts learning 
on the training dataset while keeping track of the loss function, which starts decreasing with time. 
Though the ultimate aim of the training is to minimize this loss function, there is a danger of overfitting, 
where the model will perform very well on the training data but fails to give correct results in unseen 
situations. To keep a check on this, the loss function for the validation set is also tracked continuously, 
and as it starts increasing, it means that the model has started memorizing the data instead of learning 
and hence training is stopped at this stage. Since both training and validation set is already seen by the 
model during training, to evaluate the performance of the trained model accurately and unbiasedly, a 
test dataset is used. There were multiple sessions of training, labelling, re-training before the desired 
accuracy could be achieved. For the final model, it took around 8 hours to train online on the ‘Tesla 
K80’ GPU, and the finalized model had a precision of 0.889 and a recall of 0.992 for Vehicle Y dashboard 
signs (Figure 24, Figure 25 and Figure 26).  
 

Though the videos are recorded at 29.7 FPS from the GoPro, the output from YOLOv5 was at 30 FPS. 
This difference is due to a bug [43] in the YOLOv5, due to which it is unable to process the GoPro videos 
at 29.7 FPS. Thus, all the videos need to be converted first to 30 FPS. The final output was in the form 
of excel files, each row representing one frame. 
 

5.2 Scenario Formations 

The MLP and SDLP are measured over 30 seconds (section 3) which means there will be 900 frames 
accounted as one interval. Now the signs on the dashboard can appear in different combinations. First, 
based on the False Positives and False Negatives, the wrong combinations are filtered out. The 
remaining combinations of signs were then grouped into four scenarios in Table 6 for Vehicle Y. Column 
1 to 3 in Table 6, shows the class (0 to 10) for each of the 11 signs, which are same as Figure 11. The 
fourth column shows all combinations of the signs that contributed to building the scenarios in the 
sixth column. Also, two more conditions need to be filtered out, one when the driver initiated a lane 
change (Indicator ON) and the second when there were intersections (column 7, 8 and 9). 
 

The retro-reflection was measured over the stretch of 100m, which means an interval of approximately 

150 frames. So, a second file is generated with conditions given in column 9 of Table 6. This file will be 

used to evaluate the MV performance, while the file obtained using an interval of 900 frames will be 

used to evaluate LKS lane positioning performance. All these calculations were done using MATLAB. 
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Table 6 Final Scenarios for vehicle Y (confidential) 

 

 

5.3 Processing of the Front Camera Data 

Due to the heavy rain on day 2, it was not possible to use the side cameras. Also, in session 1 of day 1, 
there were splashes on water and dirt on the camera lens, due to which it was not possible to use the 
side camera data for these sessions. Hence, the plan to calculate the lane position of the vehicle using 
the side cameras was changed. Instead, the front camera was used to calculate the lane position using 
option A, mentioned in SAE J2944 (Figure 5).  
 
The processing of the videos from the Front Camera was done by the team of Data Scientists from 
RHDHV. The Lane Position and Lane Width of the vehicle were calculated using the lane detection 
model ERFNet [44], which uses Deep Neural Network as explained in [45]. The calibration images and 
measurements were taken during the test were used to convert the results into meters (Figure 29).  
 
Second, to calculate the Contrast Ratio, the lane lines were detected using the previously developed 
ERFNet model, and then a rectangular box (Figure 30) with fixed dimensions was drawn around the 
lines to calculate the intensity of pixels of the lines (𝐼𝑚𝑎𝑟𝑘𝑖𝑛𝑔𝑠) and road (𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) separately. 

Finally, the contrast ratio is calculated as: 
 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐼𝑚𝑎𝑟𝑘𝑖𝑛𝑔𝑠 − 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

 
Third, the lane lines were also classified as dashed and continuous in the same code using the Fourier 
Transform (Figure 31).  
 
The output received from the team was Lane Position, Lane Width, Contrast Ratio and line type in an 
excel file corresponding to each frame of the video.  
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5.4 Manual Data Logging from Videos 

Though the weather data was taken from the weather station, there was a lot of difference between 

it and the actual weather during the driving conditions. Hence, it was recorded manually by watching 

the videos. Since the vehicle was mainly driven in the rainy/cloudy weather on both days, the situations 

defined are dry road, wet road and rain (Table 7 (a)). The rainy situation was initially divided into 

moderate rain and light rain, but when the final data was checked, it was found that there are very 

few instances of moderate rain; hence both were merged as rain condition. The different lighting 

conditions defined are given in Table 7 (b) and shown in Figure 14. After capturing the weather and 

lighting conditions, the next task was to log the condition related to the road geometry. The different 

type of line-markings, as shown in Figure 15, were recorded. At last, it was recorded if the road is 

divided or undivided. 

 

Table 7 Defined conditions for (a) weather and (b) lighting for manual logging 

 
 

 
Figure 13 Different weather conditions 

 

 
Figure 14 Different Lighting Conditions 

 

 
Figure 15 Type of line markings 

 

While recording the data, the video time was also entered in the excel file, which enabled to link the 
GPS coordinates to all the manual observations. This resulted in a file having road geometry with GPS 
coordinates, which was then imported into QGIS to assign the road geometry data for another day for 
another vehicle. A similar approach was followed for synchronizing the lighting condition data. 
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5.5 Processing of Reflectometer and PNH data 

First, the data for retro-reflection of the line-markings was received from the Trackline and the GPS 
coordinates against each reading in a CSV file. Second, the data from PNH was received about the last 
maintenance of the various road section throughout the province in a geodatabase (gdb) file. Third, 
the roads in the Netherlands have hectometer markers every 100 meters. This dataset is open-source 
and obtained from NWB [46] in an ESRI shapefile. While extracting the hectometers, the hectometers 
in the opposite direction of the road need to be filtered out. Finally, all of the three mentioned datasets 
were combined using QGIS, a GIS application tool.  
 
5.6 Data for Curved Road Sections 

Google Earth Pro was used to measure the radii of curves, based on which the curves were then 
classified into:  Large-radius (radius > 175m), Broad (100m–175m), Medium (60m–100m), Tight (25m-
60m) and super-tight  (radius ≤ 25 meters). Further, the curves were also categorized based upon their 
profile: Simple curve (circular curve with a single arch of a uniform radius), Compound 
curve (comprised of a series of two or more simple curves of different radius turning in the same 
direction), and Reverse curve (consists of two simple curves of the same or different radius which 
turning in the opposite direction). These calculations were taken from another intern Mahima. QGIS 
was used to merge this data into the existing data files based upon the GPS coordinates. The dataset 
was then divided into straight and curved sections and analyzed separately for LKS performance. 
 
5.7 Synchronization of the Data 

To synchronize the data from cameras, the time difference between the atomic clocks were calculated 
as shown in Table 25. Then, the calculations were repeated for each session to obtain a synchronization 
matrix shown in Table 26. Next, the metadata containing GPS coordinates were matched to the camera 
data. The remaining data were then synchronised, as shown in Figure 16, using the GPS information. 
 

 

Figure 16 Flowchart showing final steps of synchronization 
 

5.8 Final Dataset 

The data was then checked for the outliers and final quality before starting with the data analysis. 
There were many situations when a vehicle was parked or stuck in traffic. These were not relevant to 
study, and these situations lead to the false detection of lines, hence incorrect Lane Width and Lane 
Position. Therefore, all the observations with a speed of less than 30 Kmph were filtered out. This 
speed filter proved out to be very effective in identifying the correct outliers. 
 
Observing the Lane Width data, it was found that there were many outliers in the data. One option to 
remove outliers could have been based on the lanes actual width, measured using the Street-Smart. 



 

 21  

However, there was an issue during the camera calibration; hence, the outliers were considered based 
upon the Box-Whisker Plot and not the actual real value of Lane Width. After removing the outliers, 
the spread of the Lane width is shown in Figure 32. Since the manual measurements done using the 
Street Smart for the driven route shows the range is 2.73m to 3.42m, it can be concluded that the Lane 
Width measured from the camera of Vehicle Y Day1 are the most accurate. The difference in lane 
widths across different days in Figure 32 (a) is not possible. It is again due to the calibration error. 

Second, the readings of the Contrast Ratio were checked. For Vehicle X Day1, more than 50% of the 
data showed a value above 6; however, these values were ignored as incorrect. Similarly, for Vehicle 
X Day2, all the values above six were ignored. These values were practically not significant. After the 
removal of outliers, Figure 32 (b) shows the spread of the Contrast Ratio. For the same day, the values 
should have been similar for both the Vehicle Y and Vehicle X vehicles, which was not the case as there 
was a considerable difference in the values (Figure 32 (b)). Therefore, it was concluded Contrast Ratio 
Tool is giving incorrect readings. The previous study suggests CR from 0.5 to 3, and the closest are 
readings from the camera mounted on Vehicle Y Day 2. Thus, the readings of contrast ratio from the 
camera are not used. 
 
Third, Line Classification Tool was checked for its correctness. The initial plot of the distribution of line 

type detection from the total data shows that the tool gives biased readings. The output was tested 

for a stretch of a straight one-lane road where only continuous lines were present. It was seen that the 

tool is showing less than 20% of the lines as continuous. So, the data was discarded, and the manual 

observations were taken, as described in section 5.4. Below is the description of the final dataset which 

is used to obtain the result in the next chapter. 

 

Table 8 Final Dataset for analysis and modelling 
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6 RESULTS 

6.1 Machine Vision (Line Detection) Performance 

This section describes the effect of the predictor variables on the lane detection performance of the 

vehicle. The overview of the Machine Vision (MV) performance is given in Figure 33. In the case of 

Vehicle X, there were only two instances where the lanes were not detected, and hence Vehicle X’s 

MV performance is not considered in this section. Therefore, the analysis is based only on the 

performance of the vehicle Y. Furthermore, ‘A roads’ data is removed since the analysis is focused on 

the provincial roads. Finally, while studying the individual factors affecting the MV performance, the 

considered dataset is filtered as per the requirements to suppress the effect of the confounding 

variables. Whenever such filtration is done in the dataset, it is reported along with the studied factor. 

 

In this section, the statistic involved is only explained in detail for one variable (speed), and then for 

the remaining variables, only the key points are given. The frequency of ‘lane detected’ and ‘lane not 

detected’ during the different speed categories are recorded in the form of the Contingency table 

shown in Table 9. Three questions need to be answered to understand the effect of the factors. First, 

if there is a relationship between the vehicle speed and lane detection. Second, if it is found that there 

is a relationship, then which of the speed categories affects the lane detection. Last, it needs to be 

identified which speed categories result in higher or lower lane detection (good or bad performance). 

 
Table 9 Contingency table showing the lane detection vs speed categories 

 
 
The first question is answered by conducting a Pearson’s Chi-Square test to see if there is a relationship 

between the vehicle speed and lane detection status. The results are given in Table 10. The value 210.8 

and degree of freedom (df) are used to calculate the P-value, and this P-value tells the relationship 

between the two variables is significant or not. Most authors refer to statistically significant as P < 0.05 

and statistically highly significant as P < 0.001 (less than one in a thousand chance of being wrong). 

Suppose the P-value is less than 0.05; in that case, the Null Hypothesis of independence of variables is 

rejected. It can be said with 95% confidence that the lane detection and vehicle's speed are associated 

somehow. The footnote in Table 10 tells that the Chi-square assumptions are met. 

 
Table 10 Chi-Square Test for Lane Detection vs Speed 

 
 
The other two questions are answered by breaking down the significant chi-square test, as shown in 

Table 13. The adjusted residuals identify which speed categories contribute to the overall association 

with lane detection. Crosstabulation Table 11 also gives a better understanding when seen in 

combination with Contingency Table 9. The count value of the ‘Final_Scenario’ against each of the 

speed category is taken from contingency Table 11, and the expected count is calculated using the chi-

square test model. The calculated residuals (error between model prediction and actual data) are then 

  
Final_Scenario 

Total 
Lanes Detected Lanes Not Detected 

Speed_cat 

Less than 60 Kmph 82 192 274 

60 to 80 Kmph 798 624 1422 

80 to 90 Kmph 203 101 304 

Above 90 Kmph 154 0 154 

Total 1237 917 2154 

 

 Value df Significance (p-value) 

Pearson Chi-Square 210.8a 3 < 0.001 

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 65.56. 
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adjusted for correctness. The adjusted residual values that lie outside of ±1.96 means it is significant 

at P < 0.05, if it lies outside ±2.58, then it is significant at P < 0.01, and if it lies outside ±3.29, then it is 

significant at P < 0.001. 

 

Table 11 Crosstabulation - Speed Category vs Lane Detection 

 
 

To interpret Table 11, let us examine the speed category ‘less than 60 Kmph’. There are 274 cases (13% 
of total 2154 cases) of lanes detected or not detected. Further, 1237 lane detected cases (57% of the 
total cases) and 82 (7% of the total detected cases) were found at speed less than 60 Kmph. The 
percentages of lanes detected or not within this speed category can be seen in the row ‘% within 
Speed_cat’. The calculated adjusted residuals for speed less than 60 Kmph are significant for both lanes 
detected (adjusted residual = -10) and lane not detected (adjusted residual = 10) as the value is above 
±1.96. The minus sign of adjusted residuals tells that the detected lines are significantly less than 
expected by the model if there were no difference in the distribution of lane detection across different 
speed categories. Conversely, the positive sign indicates that significantly more lines than expected 
were detected. Since the outcome variable is dichotomous, for simplicity, further in the report, only 
‘Lanes Detected’ cases are discussed.  
 
To conclude, a Pearson’s Chi-Square test,  𝜒2(3) = 210.8, 𝑃 < 0.001, confirms that vehicle speed 
significantly affects the lane detection performance of the vehicle. Further investigation using the 
Crosstabulation table shows that: 

• For a speed below 60 Kmph, the lane detection percentage is significantly less. 

• For a speed between 60 and 80 Kmph, the lane detection performance was not significantly 
affected by the vehicle speed. 

• For a speed above 80 Kmph, the lane detection percentage is significantly high.  
 

  
Final_Scenario 

Total 
Lanes Detected Lanes Not Detected 

Speed_cat 

less 
than 60 
Kmph 

Count 82 192 274 

Expected Count 157 117 274 

% within Speed_cat 30% 70% 100% 

% within Final_Scenario 7% 21% 13% 

Adjusted Residual -10 10  

60 to 80 
Kmph 

Count 798 624 1422 

Expected Count 817 605 1422 

% within Speed_cat 56% 44% 100% 

% within Final_Scenario 65% 68% 66% 

Adjusted Residual -2 2  

80 to 90 
Kmph 

Count 203 101 304 

Expected Count 175 129 304 

% within Speed_cat 67% 33% 100% 

% within Final_Scenario 16% 11% 14% 

Adjusted Residual 4 -4  

greater 
than 90 
Kmph 

Count 154 0 154 

Expected Count 88 66 154 

% within Speed_cat 100% 0% 100% 

% within Final_Scenario 12% 0% 7% 

Adjusted Residual 11 -11  

Total 

Count 1237 917 2154 

Expected Count 1237 917 2154 

% within Speed_cat 57% 43% 100% 

% within Final_Scenario 100% 100% 100% 
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The detailed statistical output for the remaining variables is given in APPENDIX I - Machine Vision 
Performance, and only the primary outcomes are reported in this section. 
 
The retro-reflection (𝑹𝑳) of the line-markings significantly affects the lane detection performance of 
the vehicle,  𝜒2(4) = 126.3, 𝑃 < 0.001. Further, amongst the different categories of retro-reflection, 
it is found that (Table 27): 

• For Class E (𝑅𝐿  < 125) and Class D (125 < 𝑅𝐿 < 150), the lane detection percentage is 
significantly less. 

• For Class C (150 < 𝑅𝐿 < 175) the lane detection percentage was not affected significantly by 
the retro-reflection of line-markings. 

• For Class B (175 < 𝑅𝐿  < 200), the lane detection percentage is significantly high. 

• For Class A (𝑅𝐿  > 200) the lane detection percentage is significantly less. 
 
The higher the value of the retro-reflection means better visibility of line-markings; hence it is expected 
to have a higher lane detection percentage on the roads with high values of retro-reflection. However, 
the lower detection percentage for Class A is not intuitive and needs to be analyzed, but let us see the 
Contrast Ratio ratio first. 
 
The logistic regression model is used to see the Contrast Ratio (CR) effect on line-detection (MV). The 
dataset considers only night condition, dry road and divided roads to negate the effect of other 
variables. The test shows that contrast ratio and line-detection have a significant (P = 0.01) negative 
relationship. Table 28 shows the estimated coefficients, and it can be inferred that as the CR increases 
by one unit, the odd of lane detection decreases by 37% (1-Exp(B)). The relationship is not intuitive, 
similar to the lower lane detection percentage for Class A road sections. It will be investigated in the 
following paragraphs. 

 
The width of the lane also significantly affects the lane detection performance of the vehicle,  𝜒2(3) =
109.5, 𝑃 < 0.001. Further, it is found that (Table 29): 

• For lane width, less than 3m, the ratio of lane detection is significantly less. 

• For lane width between 3m to 3.5m, the ratio of lane detection is significantly higher. 

• For lane width above 3.5m, there is no significant difference in lane detection performance. 
 

Considering lane width as a factor affecting lane detection might not make sense at first. However, 
the lane width turned out to be an essential factor when analysing the lower lane detection 

percentage for the higher values of  𝑅𝐿 and Contrast Ratio. For most of the route where lane width 
was below 3m, the lanes were not detected irrespective of the higher visibility of the lane markings  

Figure 36. The biased behaviour of vehicle Y for narrow lane width resulted in non-intuitive results of 
𝑅𝐿 and CR.  
 
The type of lane line markings also significantly affects the lane detection performance of the vehicle, 
 𝜒2(3) = 418.2, 𝑃 < 0.001. Further, it is found that (Table 30): 

• For continuous(left)-dashed(right) line markings on the road, the lane detection percentage is 
significantly less (Bad performance).  

• For all the rest combinations of the line-markings, the lane detection percentage is significantly 
high (Good performance) 
 

The type of line marking combined with the lane width further explains the non-performance of vehicle 
Y on the line-markings with high 𝑅𝐿. The dataset with lane width above 3m, line markings excluding 
continuous-dashed and night conditions was chosen to confirm this. It was found that such conditions 
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existed for 17.2 Kms of the entire route, and for these 17.2 Kms, there was only one instance where 
line marking were not detected by the vehicle Y, i.e. 99.4% lines were detected (Table 34). 
 
The weather conditions also significantly affected the lane detection performance of the vehicle, 
 𝜒2(2) = 64.2, 𝑃 < 0.001. Compared to Dry Road conditions, lane detection is significantly less for 
wet roads; however, it is significantly high for Rainy conditions (Table 31). The high performance during 
the rain is not intuitive, as one would expect lower performance during the rain due to the lower 
visibility. The rain conditions constitute only 3.5% of the total dataset and probably the reason for this. 
 
The lighting conditions also significantly affect the lane detection performance of the vehicle,  𝜒2(2) =
76.7, 𝑃 < 0.001. The dataset used is lane width above 3m and line markings excluding continuous-
dashed line-markings. It was found that the lane detection percentage was significantly high during 
the day and significantly low during dusk and night (Table 32). 
 
The lane detection performance was found to be significantly different on divided and undivided 
roads,  𝜒2(1) = 308, 𝑃 < 0.001. The divided roads have significantly higher lane detection 
performance as compared to the undivided roads (Table 33). The lane detection performance was 
unaffected by the straight and curved sections on the road,  𝜒2(1) = 0.4, 𝑃 = 0.51. 
 

Table 12 Binomial Logistic Regression Model for Machine Vision (vehicle Y) 

 
 

While studying the effect of the individual variables, the dataset was modified to suppress confounding 

variables. Table 12 shows the logistic regression model built on the complete dataset of the Vehicle Y 

and considering all the variables at once (df = 1). The interpretation is given in Table 12 shows that the 

results are almost similar to the previous finding in this section (except for weather conditions). The 

model's overall fit can be seen in Table 13, which shows that the model has an accuracy of 80%.  

 

Coding Variable Description B S.E. df Sig. Exp(B) Interpretation

RL_class A

RL_class(1) B 1.034 0.167 1 <0.001 2.812
RL_class(2) C 0.108 0.175 1 0.537 1.114
RL_class(3) D 0.135 0.215 1 0.529 1.145
RL_class(4) E -2.177 0.642 1 0.001 0.113
LaneWidth less than 3.5m

LaneWidth(1) 3m to 3.5m 1.818 0.216 1 <0.001 6.157
LaneWidth(2) 3.5m to 4m 1.360 0.220 1 <0.001 3.895
LaneWidth(3) above 4m 2.921 0.494 1 <0.001 18.562
Speed_cat less than 60 Kmph

Speed_cat(1) 60 to 80 Kmph 1.229 0.227 1 <0.001 3.418
Speed_cat(2) 80 to 90 Kmph 0.919 0.296 1 0.002 2.507
Speed_cat(3) above 90 Kmph 19.235 3472.574 1 0.996 225.600
Weather Dry Road

Weather(1) Wet Road -20.981 5460.527 1 0.997 0.000
Weather(2) Rain -22.007 5460.527 1 0.997 0.000
Lighting Day

Lighting(1) Dusk -1.372 0.263 1 <0.001 0.254
Lighting(2) Night -0.649 0.234 1 0.006 0.523
Road Type Undivided

RoadType(1) Divided 0.983 0.189 1 <0.001 2.672
Combined Line Cont-Cont

Combined Line(1) Cont-Dash -4.537 0.638 1 <0.001 0.011
Combined Line(2) Dash-Cont -2.696 0.685 1 <0.001 0.067
Combined Line(3) Dash-Dash -2.807 0.688 1 0.000 0.060
Constant 23.405 5460.527 1 0.997 146.100

Compared to continous-continous lane 

markings, all other type of lane markings 

have lower detection percentage

Reference

Reference

Reference

Reference

Reference

Reference

Reference

Class B have higher detection percentage 

and Class E roads have lower detection 

percentage

Lane width above 3m have significantly 

higer lane detection percentage

Speed between 60 Kmph and 80 Kmph 

have higher lane detection percentage

Weather condition don't have significant 

affect on the LKS performance

Dusk and Night have lower detection 

percentage compared to day time

Divided roads have high lane detection 

percentage compared to undivided roads
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Table 13 Confusion Matrix for the evaluation of developed logistic regression model 

 

 

6.2 LKS lane positioning performance 

This section describes the effect of the predictor variables (factors) on the MLP and SDLP, which are 

the measures for the lane positioning performance of the vehicle. The overall LKS positioning 

performance is shown in Figure 38. Unfortunately, both MLP and SDLP do not have a normal 

distribution of data, which means that parametric test cannot be used to analyse Lane positioning 

(Figure 39, Table 35, Table 36).  

 

Like the previous section, the statistic involved is only explained in detail for one variable (speed), and 

then for the remaining variables, only the key points are given. The three questions to be answered 

while studying the effect of a variable on LKS are the same as the previous section. First, if there is a 

relationship between the vehicle speed and MLP/SDLP. Second, which of the speed categories affects 

the MLP/SDLP. Last, if the identified effect results in good or bad LKS performance.  

 

First, a Kruskal-Walis test is run on the dataset for both vehicles Vehicle X and Vehicle Y, to check if 

there is a relation between the vehicle speed and MLP/SDLP. For Vehicle Y, the test results in Table 14 

shows that both MLP and SDLP are not related to vehicle speed since the P-value is above 0.05. For 

Vehicle X, the results in Table 15 show that MLP is not related to vehicle speed, but the SDLP is 

significantly (P < 0.05) affected by the vehicle speed. 

 

Table 14 Kruskal-Wallis Test - Speed vs LKS Positioning (vehicle Y) 

 

 

Table 15 Kruskal-Wallis Test - Speed vs LKS Positioning (vehicle X) 

 

 

Second, pairwise comparison tests for Vehicle X (Table 16) between the vehicle speed and SDLP answer 

the remaining questions. The SDLP has a significant difference between the vehicle speed ‘less than 60 

Kmph’ and ’60 to 80 Kmph’.  

 

Lanes Not Detected Lanes Detected

Lanes Not Detected 578 174 76.9%

Lanes Detected 193 912 82.5%

80.2%

Predicted Final_Scenario Percentage 

Correct

Observed 

Final_Scenario

Overall Percentage

Null Hypothesis Sig. Decision 

The distribution of MLP is the same across categories of Speed_cat. 0.274 Retain the null hypothesis. 

The distribution of SDLP is the same across categories of Speed_cat. 0.538 Retain the null hypothesis. 

 

Null Hypothesis Sig. Decision 

The distribution of MLP is the same across categories of Speed_cat. 0.37 Retain the null hypothesis. 

The distribution of SDLP is the same across categories of Speed_cat. 0.035 Reject the null hypothesis. 
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Table 16 Pairwise Comparison of Speed and SDLP (vehicle X) 

 

 

Further, for the above two mentioned speed categories, the median of SDLP in the whisker-box plot 

and their corresponding ranks in Figure 17 shows that the Vehicle X has a high SDLP for speed less than 

60 Kmph compared to speed between 60 to 80 Kmph. The higher ranks for the speed category means 

the higher value of SDLP. The general linear trend can be found using the Jonckheere-Terpstra (J-T) 

test, which shows that J-T statistics is -2.143 for SDLP vs speed. The absolute value above 1.65 shows 

that the test is significant, and the negative sign indicates a trend of decrease in SDLP for increasing 

vehicle speed, as explained in the section 15.5.6 of the book [47]. 

 

 

Figure 17 (a) Whisker-Box Plot (b) Ranks from Kruskwalis-Test for vehicle X SDLP vs speed 
 

To say in simple terms, the effect of the vehicle speed on the lane positioning performance is that: 

• The MLP is not affected by the vehicle speed for both Vehicle Y and Vehicle X (Good 

Performance) 

• The SDLP for Vehicle Y is not affected by the vehicle speed (Good Performance) 

• The SDLP for Vehicle X is affected by the vehicle speed, and it is found that SDLP for speed less 

than 60 Kmph is significantly higher than the speed between 60 and 80 Kmph. In general, there 

is a negative trend, which means the higher vehicle speed has less SDLP (Good trend) 

 

The detailed statistic output results for the remaining variables are given in APPENDIX J – Lane 
Positioning performance, and only the primary outcomes are reported in this section. 
 

Sample 1-Sample 2 Test Statistics  Std. Error Std. Test Statistic Sig. Adj. Sig.a 

80 to 90 Kmph-60 to 80 Kmph 15.04 27.24 0.55 0.581 1.000 

80 to 90 Kmph-above 90 Kmph -21.21 35.92 -0.59 0.555 1.000 

80 to 90 Kmph-Less than 60 Kmph 76.17 33.44 2.28 0.023 0.136 

60 to 80 Kmph-above 90 Kmph -6.17 2.53 -0.24 0.807 1.000 

60 to 80 Kmph-Less than 60 Kmph 61.13 21.62 2.83 0.005 0.028 

above 90 Kmph-Less than 60 Kmph 54.96 31.86 1.73 0.085 0.507 

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 
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The Kruskal-Wallis test showed that SDLP for both vehicle Y and Vehicle X does not vary amongst 

different line-markings (Table 37). However, the MLP was significantly affected by the type of lines 

present on both sides of the lane (P < 0.001). A post hoc pairwise comparisons tests were performed 

to follow up the findings for both vehicle Y and vehicle X for Day 1 and Day 2 separately. It was found 

that the MLP significantly differ across “Dashed(left) - Continuous(right)” and “Continuous(left) -

Continuous(right)” line markings for both Vehicle X and Vehicle Y. However, a reverse trend is found 

(Figure 40, Figure 41) between Vehicle Y and Vehicle X amongst the category of line-markings: 

• When both right and left markings have continuous lines, the MLP is lowest for Vehicle Y (Good 

performance) and highest for Vehicle X (Bad performance) 

• For all the remaining type of lane marking combinations, the MLP is comparatively higher for 

Vehicle Y (Bad performance) and comparatively lower for Vehicle X (Good performance) 

 

A Mann-Whitney test is performed to see the effect of straight and curved sections on the lane 

positioning. The test shows that the difference in the MLP between the straight and curved sections is 

not significant for both Vehicle Y (P=0.292) and Vehicle X (P=0.952). Likewise, the SDLP for straight 

and curved sections is not statistically different for Vehicle Y (P=0.952); however, for Vehicle X, the 

difference in SDLP is significant (P=0.002). Furthermore, the test (Figure 42) for Vehicle X shows that 

the mean rank is higher for curved sections than the straight sections, which means the recorded 

values of SDLP during the curved sections are higher than the straight sections. In simple terms: 

• The MLP is not affected by curved sections for both Vehicle Y and Vehicle X (Good 

Performance) 

• The SDLP for Vehicle Y is not affected by the curved sections (Good Performance), but for 

Vehicle X is found to be higher for curved sections (Bad performance). 

•  However, it should be noted that the deficient performance for Vehicle X is w.r.t. straight and 

curved sections only and not compared to Vehicle Y.  Figure 42 (b) shows that SDLP for Vehicle 

X is comparatively less than Vehicle Y for straight and curved sections. 

 

Out of the 90 curves encountered, Vehicle Y executed 19, and Vehicle X executed 38 curves without 

any human intervention. The analysis in Figure 43 shows that both Vehicle Y and Vehicle X could not 

autosteer the curves with the compound profile. In addition, Vehicle Y could not execute any sharp 

curve with a radius below 100 m. However, the data could not be analysed statistically due to 

insufficient cases present amongst different curves. 

 

To study the effect of lane width on LKS performance, only the data from day one is considered due 

to the calibration error of the Front Camera (section 5.9) for day 2. The results of the Kruskal-Walis 

test are given in (Figure 44, Figure 45), and the main points are: 

• The MLP of Vehicle Y remains the same for different lane width ( 𝜒2(1) = 0.8, 𝑃 = 0.38)  

• The MLP of Vehicle X differs significantly for different lane width ( 𝜒2(1) = 30.3, 𝑃 < 0.001). 

Further, it is found that Vehicle X positions itself closer to the lane centre on the lanes width 

above 3m than for the lanes with a width less than 3m (figure).  

• The SDLP differs significantly for both Vehicle Y ( 𝜒2(1) = 7.3, 𝑃 = 0.07) and Vehicle X 

( 𝜒2(1) = 10.3, 𝑃 = 0.001) for different lane width. It is found that for lane width above 3m, 

the SDLP is significantly higher than SDLP for lane width below 3m. 

 

In general, the broader lane width results in better MLP (close to lane-centre) but a higher SDLP. 
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While studying the effect of weather conditions on LKS performance, only the data for the straight 

road is considered. A Kruskal-Wallis H test showed that there was a statistically significant difference 

in MLP between the different weather conditions for Vehicle Y (𝑃 = 0.016) as well as for Vehicle X 

(𝑃 < 0.001). The SDLP was also found to be statistically different in the considered weather conditions 

for both Vehicle Y (𝑃 < 0.001) as well as Vehicle X (𝑃 < 0.03). Further, the pairwise comparison test 

shows that changes in weather conditions from Dry roads to wet roads or rainy conditions result in 

higher MLP and higher SDLP (Figure 46, Figure 47). 

 

The lighting conditions significantly affected the MLP and SDLP for both Vehicle Y and Vehicle X (Figure 

48, Figure 49). It is found that the night condition has the best lane positioning performance (both MLP 

and SDLP). The exception is the MLP for Vehicle X, which significantly differs in all three conditions. 

The best performing conditions for Vehicle X MLP follow the order: Dusk, Night and Day. In general, it 

can be said that the vehicle maintains its position best during the night drive on dry roads.  

The divided/undivided roads do not affect the MLP of Vehicle Y. However, on the undivided roads, 

Vehicle X position itself towards the left of the lane centre. The figure shows that the MLP for undivided 

roads is between -10 cm and -20 cm, while for the Divided Roads, the MLP is mostly between -10 cm 

and 0 cm. The Mann-Whitney U test Figure 50 identifies the difference in data distribution with very 

high significance (P < 0.01). Therefore, Vehicle X performance on the undivided roads is considered a 

bad performance because the vehicle is closer to the oncoming traffic. The same thing was noticed 

during the conduction of the experiment as it was very uncomfortable for the driver to keep 

automation ON for Vehicle X on undivided roads. 

 

6.3 Identification of Hotspots 

The hotspots were defined as the road infrastructure conditions where the LKS: (i) failed to detect the 

lanes or (ii) when the vehicle is in control but failed to keep itself within the lanes or (iii) those 

conditions where the MLP and SDLP are above 10 cm. The most challenging part in identifying hotspots 

was to detect the defined event of the hotspot, as these occur momentarily for a fraction of a second.  

 

For Vehicle Y, the developed dashboard sign detection tool (section 5.1) precisely identified the 

hotspot condition (i) and (ii) as Case 2 (Lanes not detected) and Case 4 (Autosteer fails to keep the 

vehicle within lanes), respectively, given in Table 6. On the other hand, since Vehicle X detected the 

lines 100% of the time, the hotspot was defined as Case 2 (Autosteer drops) in Table 23. These 

identified hotspots can be seen in Figure 18 (a). Furthermore, the lane position calculation tool (section 

5.3) identified the hotspot condition (iii) for both Vehicle Y and Vehicle X, and the results are given in 

Figure 18. Moreover, these tools took 30 measurements per second, thus precisely identifying all the 

hotspots encountered during the route.  
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Figure 18 LKS Hotspots (a) Lane Detection (b) Lane Positioning (confidential) 

 

6.4 Level of Service (LoS) for LKS 

The LoS is defined to give Road Authorities an insight into the readiness of the road infrastructure for 

the LKS. The MV performance (line detection) and Lane Positioning performance (MLP and SDP) of the 

LKS are combined to calculate the LoS. The LoS is calculated as per thresholds in Table 17. The literature 

research in section 2.3 found no existing threshold values for MLP and SDLP for automated driving to 

classify them into safe/unsafe situations. Hence these thresholds are decided based upon the 

performance of the two vehicles considered in this research.  

 

Table 17 Defined LoS for the LKS 

LoS 0 LoS 1 LoS 2 LoS 3 LoS 4 LoS 5 

Lanes Not 
Detected 

Lanes 
Detected 

MLP > 10 cm 
SDLP > 10 cm 

MLP > 10 cm 
SDLP <= 10 cm 

MLP <= 10 cm 
SDLP > 10 cm 

MLP <= 10 cm 
SDLP < =10 cm 

 
Infrastructure LoS 0 represents the section of road infrastructure where LKS could not detect the lines, 

which means no LKS support to the driver, thus the most unsafe situation. At LoS 1, the vehicle will be 

assisting the driver and thus a better situation than LoS 0. However, once the lane is being detected 

by the vehicle, the next step is to calculate how close the vehicle is positioning itself to the lane centre. 

LoS 2 represents when the vehicle is farthest, and LoS 5 represent when it is closest to the lane centre. 
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Figure 19 Level of Service for LKS (confidential) 

 

Figure 19 shows the LoS based on LKS performance of the first day. It can be seen in Figure 19 that 

there is no LoS 0 because Vehicle X detected 100% of the lines. Figure 57 similarly shows the LoS for 

the second day. 

 

6.5 Prediction Models 

To predict the performance of the LKS, two models are built using the Neural Network. The first model 

predicts the Machine Vision performance of the vehicle. The predictor variables for this model are 

retro-reflection of line markings, lane width, type of line marking (continuous/dashed), road type 

(divided/undivided), weather and lighting conditions. These variables are shortlisted based upon the 

factors affecting MV performance (section 6.1). The second model predicts the Lane positioning 

performance of the vehicle, i.e. MLP and SDLP. The predictor variables are the same for this model as 

well, except for the retro-reflection of line-markings. These are based upon the factors affecting lane 

positioning performance (section 6.2). The training dataset used for both the models is different and 

explained in section 5.2. The Lane Detection (MV) model uses the dataset of route segmented into 

different sections of 100 m, while the Lane Positioning model uses segments of approximately 1 Km. 

 

The prediction model can predict the LKS performance on a different route with different weather and 

lighting conditions. For example, suppose the whole driven route had a lane width between 3m and 

3.5m, and the line markings were of continuous type on both sides of the lane. The impact of these 

changes in the lane width and line marking can be seen in Figure 20. Further, Figure 20 (a) shows the 

LKS performance when there were no changes made in the driving conditions and Figure 20 (b) shows 

the LKS performance when the mentioned changes are made (lane width = 3m to 3.5m and line type 

= continuous). The ODD in and ODD out refers to the situation when the LKS can detect the lane or 
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unable to detect lanes, respectively. The interface to interact with the prediction tool is shown in Figure 

58. The plotted locations in Figure 20 (b) can also be seen in the form of hectometers in Figure 59. 

 

 
Figure 20 Model Output (a) Original Performance (b) Change in LKS performance (confidential) 

Figure 21 combines the results of Figure 20 (a) and (b) in one map for a better understanding. Box 1 in 

Figure 21 represents where the change in driving condition has negatively impacted the initially inside 

ODD situation into outside ODD. Box 2 represents the situation where the change in driving condition 

had a positive effect, as the outside ODD conditions are now inside. 

 

 

Figure 21 Using the Prediction Model for assessment of road network (confidential) 
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6.6 Validation of the Models 

The dataset was divided into three parts: 70% for training, 20% for validation, and 10% for testing to 

validate the model. The division was random to have variation in each of the datasets. The graphs 

showing the tracking of loss function and accuracy of the models are given in Figure 51, Figure 52 and 

Figure 53. The accuracy of the developed models in the form of a confusion matrix is given in Figure 

54, Figure 55 and Figure 56. The summary of the results is given below in Table 18: 

 

Table 18 Validation of the developed LKS models 

 

 

 

 

 

  

 

 
  

Current Model Validation Data Accuracy Test Data Accuracy 

Lane Detection (MV) 80.1% 83.9% 

Lane Positioning (MLP) 74.3% 78.5% 

Lane Positioning (SDLP) 80.7% 78.5% 
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7 DISCUSSION  

In this chapter, the results from the previous chapter are further interpreted. A discussion is presented 

on how Road Authorities (RA) can use the results from this thesis towards the ongoing development 

in vehicles with Automated Driving System (ADS). Finally, the objectives of this research and the 

developed prediction model are reviewed. 

 

Considering the readiness of the infrastructure for the cars that can read the road, it is seen that on 

the considered N-roads, the lane-detection percentage was only 57% for Vehicle Y while 100% for the 

Vehicle X. The low performance of Vehicle Y might question the infrastructure readiness; however, the 

retro-reflection survey shows that 85% of the driven route had retro-reflection above 150 mcd/m2/lux, 

and 89% of the route had contrast-ratio above 90%, which indicates the higher visibility and good 

conditions of the line-markings. 

 

The probable reason for the significant difference in the performance of the two vehicles could be the 

difference in the algorithm used by the respective vehicle manufacturers (OEMs). In section 2.1, it was 

seen that the two majorly used algorithm Computer Vision (CV) and Deep Learning (DL), could have a 

significant difference in performance. The SLAIN project [22] also concluded that while for the 

Computer Vision-based algorithms, the visibility of the lane markings (retro-reflection and Contrast 

Ratio) is critical; for the Deep Learning-based algorithms, the uniformity of the lane markings is 

essential. Therefore, the Deep Learning-based algorithm might be the reason for Vehicle X’s unaffected 

Machine Vision performance. However, there was no major non-uniformity observed in the line 

marking during the drive. The Deep Learning-based algorithms are also more robust to the adverse 

environmental conditions as the algorithm uses not only the contrast between the road and line 

markings but also several other features learned using the training dataset. Vehicle X mentions in [48] 

how it uses the data from the fleet to train its Deep Learning-based algorithm. Vehicle X uses a variety 

of dataset, and an example of it is shown in Figure 60, and the overview of Vehicle X’s Deep Learning-

based algorithm is given in Figure 61. Unfortunately, it was not possible to get an insight into the kind 

of algorithms used by Vehicle Y for the Lane-Keeping System (LKS). 

 

Section 6.1 presented the factors affecting the Machine Vision performance of Vehicle Y. It was found 

that the lane-detection is significantly affected by the retro-reflection of the lane markings, lane-width, 

type of line markings, divided/undivided roads, vehicle speed, weather, and lighting conditions. The 

majority of obtained results align with previous research given in APPENDIX A – Factors affecting the 

LKS Performance. However, there were some non-intuitive results, which also did not match with 

previous research. These were partly discussed in section 6.2 and further discussed here in this 

chapter. 

 

For some road sections having very high visibility of lane markings (high retro-reflection and contrast 

ratio of line-markings), the vehicle could not read the lines. The in-depth analysis showed that for such 

situations, either lane width was below 3m or there were ‘continuous(left)-dashed(right)’ line markings 

on the road. To further explore this non-intuitive behaviour of the vehicle, the standards for lane width 

in Japan (Vehicle Y’s Head office) were checked. It was found that National expressways and highways 

in Japan have lane width above 3m while other roads have lane width below 3m. So, there is a 

possibility that Vehicle Y’s onboard camera calculates the lane width and does not allow the Autosteer 

functionality whenever the lane width is below 3m to restrict the Lane-Keeping System (LKS) only to 

highways and expressways. Also, the owner’s manual of Vehicle Y mentions that Autosteer will not 

function in too narrow and too wide lines [49]. However, in the manual, like every other vehicle 
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manufacturer manual, only general statements are made, and it is not defined that what is too narrow 

or too broad. To conclude, based upon this research, lane width below 3m is an outside ODD 

(Operational Design Domain) condition for Vehicle Y, and the onboard sensors on the vehicle identify 

this situation themselves. 

 

Section 6.2 presented the lane positioning performance, Mean Lane Position (MLP) and Standard 

Deviation of Lane Position (SDLP), for the automated driving for both Vehicle Y and Vehicle X. The MLP 

is significantly affected by the type of line-markings (dashed/continuous) and lane width, which means 

that the vehicle is either using the lane lines information to position itself or the vehicle functionality 

is limited. While for the narrow or wide lane width, the significant difference in MLP could be due to 

the vehicle’s algorithm limitations related to automated steering, it is difficult to understand the 

difference in MLP based upon the type of line-markings (continuous/dashed). In Vehicle X, 100% of the 

lines are detected, so MLP should not vary significantly due to different line-markings. So, the probable 

reason is that vehicles use the line information to identify the different scenarios, such as divided and 

undivided road, which affects the MLP. 

 

Going further into the discussion, Mean Lane Position (MLP)  for Vehicle X is negative on the undivided 

roads, and it can lead to unsafe situations as the vehicle is more towards the left and closer to the 

oncoming traffic. It is non-intuitive that why Vehicle X would place itself towards the oncoming traffic 

on the undivided roads. As discussed, that the vehicle uses lane line information to identify the 

different scenarios, so Vehicle X’s negative MLP might be due to the difference in the colour of line-

markings between the United States (Vehicle X Head Office) and the Netherlands. In the U.S., yellow 

lines separate the traffic flowing in the opposite direction, while white lines separate lanes that travel 

in the same direction. Since in the Netherlands, only white lines are used, this might be the reason why 

Vehicle X’s MLP is negative. To confirm this, more data is required, especially for the MLP for yellow 

lines. The previous research by Bhusari et al. [29] in the Netherlands also shows the negative MLP for 

Vehicle X. 

 

It was found that both vehicles struggle to execute the compound profile curve. McCall and Trivedi 

[50] explain that during the development of the LKS algorithm, the road can be modelled as linear, 

parabolic or spline, depending upon the choice that requires a trade-off between high stability or a 

high TLC (Time to Line Cross). The tradeoff becomes more critical on curves where the look-ahead 

distance is small. Additionally, if the curve profile is also not simple, it further makes it difficult to model 

the road ahead. The low performance of the vehicle on a curved section with the complex profile is 

similar to the observation by Tapsi et al. [51] and Nitsche et al. [52]. 

 

The lane detection, Mean Lane Position (MLP) and Standard Deviation of Lane Position (SDLP) for the 

vehicle is significantly affected by the lighting and weather conditions because of the changing visibility 

conditions. Combining the adverse weather conditions with narrow lane width on an undivided road 

and the vehicle's biased behaviour to position itself toward the oncoming traffic can lead to dangerous 

situations. So, the question is how to deal with this situation and the role of vehicle manufacturer 

(OEM) and Road Authority (RA) in it. In a broader context, how to ensure the automated vehicle does 

not exit its ODD (Operational Design Domain) or ensure the safe operation of Lane-Keeping System 

(LKS). 

 

The one obvious and most quoted solution to the posed question is the synergy amongst the vehicle 

manufacturers and road authorities to ensure the safe operation of the Automated Driving System 
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(ADS).  However, this does not seem to be happening, and there seem to be two reasons for that. First, 

by its definition, the Operational Design Domain (ODD) needs to be defined by the vehicle 

manufacturer (OEM) designing the automated feature and not meant to be measured by a testing 

agency or Road Authorities (RAs). However, the defined ODD is never shared by the vehicle 

manufacturers, and thus, Road Authorities never get an insight into the problem. Second, the different 

vehicle manufacturers have different abilities, as explained in this research, and these abilities are 

certain to change in the coming years. This incapacitates the Road Authorities in doing any physical 

infrastructure changes as it involves cost, time, and the uncertainty if that change will still be beneficial 

after few years. 

 

The methodology used in this research to identify the Level of Service (LoS) for the road network can 

help Road Authorities (RAs) have an insight into the vehicle performance, enabling them to know how 

the current Automated Vehicles interact with the infrastructure. The results from this research can 

help Road Authorities to have a better dialogue with vehicle manufacturers (OEMs) as instead of asking 

what the infrastructure requirements are; the Road Authorities can ask why the vehicle is not 

performing on the given set of infrastructure conditions, such as lane width, line marking colour as 

identified in this research. The data from current research can bring better outcomes from ongoing 

roundtable discussion about the role of vehicle manufacturers and Road Authorities and bring 

consensus among various stakeholders. 

 

The hotspots and calculated Level of Service (LoS) in section 6.3 and 6.4 are valid only for the driven 

test route and for the encountered road conditions. However, the developed prediction model can be 

used by RAs to identify the hotspots that can result due to specific type of interaction amongst the 

road infrastructure, driving conditions, and different OEM vehicle, which could have otherwise gone 

unnoticed. The approach is similar to the one proposed by the EuroRAP [53] for network-wide road 

assessment, focusing primarily on identifying “black spot” and route safety. Their method also involves 

dividing the road into a section of 100 meters and then calculating relative risk scores to classify the 

road into a Star Rating scale that expresses the safety capacity of a road section for each road user in 

a 5-Star scale that can be used as an international benchmark. In this research, the network is divided 

into 5-LoS, and the aim would be to have all the network with level 5. The lower Level of Service (LoS) 

does not necessarily mean that road infrastructure changes need to be made; it might be due to some 

unaddressed issue by the vehicle manufacturer. When the Road Authorities point out such issues to 

vehicle manufacturers, it will automatically lead to synergy. 

 

The objective of the research to develop a methodology to identify the required infrastructure changes 

for the safe operation of the Lane-Keeping System (LKS) is accomplished. The developed methodology 

identified the factors affecting LKS, which can be used in combination with the prediction model to 

decide the infrastructure changes; however, the larger question is if those changes should be made. In 

this research, both test vehicles had a significant difference in lane detection performance. Now one 

approach is to benchmark the low performance of Vehicle Y to decide the infrastructure changes, or 

second is to conclude that the infrastructure does not require any changes based on the performance 

of high performing vehicle Vehicle X. However, the discussion in this chapter showed that the identified 

shortcomings in the considered test route could be addressed by a dialogue between the vehicle 

manufacturers and Road Authorities rather than straightforwardly doing any physical infrastructure 

changes. 
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8 CONCLUSION 

The decision by the EU to mandate the set of Automated Driving features have created a buzz in the 

automotive industry and amongst the various agencies such as Road Authorities (RA). The Road 

Authorities are concerned to know if the road infrastructure is ready for automated vehicles. However, 

the Road Authorities have limited access to the technology being used by the vehicle manufacturers 

(OEMs), which makes it difficult to assess the infrastructure. Tapsi et al. [51] concluded that the critical 

insight into the ODD (Operational Design Domain) of Automated Vehicles is not sufficiently available 

to the Road Authorities, which incapacitate them to make any policy recommendations. Instead, the 

Road Authorities have to determine the limitations of these automated vehicles experimentally.  

Several studies have suggested the various infrastructure changes that should be made to ensure the 

safe operation of such automated systems. However, most of them are based on theoretical research, 

and only a few studies are based on practical research.  

 

This research adopted the empirical approach to answer the posed question about the readiness of 

the road infrastructure. In this study, a test route of about 250 Kms was selected based on road age, 

variation in the lane width, divided and undivided roads, curved sections with varying curvature. To 

get an insight into the quality of road infrastructure, a survey was conducted to measure the retro-

reflection of the line-markings. Two different OEM vehicle based upon the lowest and highest LKS 

(Lane-Keeping System) performance in the EuroNCAP assessment were selected. The vehicles 

equipped with sensors were driven on the test route to measure the LKS performance in varying driving 

condition. The vehicle speed, road geometry, weather and lighting conditions were also recorded. The 

resulting dataset was then used for empirical analysis to see the LKS performance against the different 

measured variables. The LKS performance was based upon the Machine Vision (MV) and lateral lane 

positioning performance. 

 

The Machine Vision (MV) performance was measured using the lane detection percentage of the 

vehicle. The most critical performance measures of the visibility of the line marking were found to be 

retro-reflection and contrast ratio. These measures have been widely used in recent studies to ensure 

the readiness of the infrastructure for automated driving. The survey on the chosen test route shows 

that 85% of the driven route had retro-reflection above 150 mcd/lx/m2, and 89% of the route had 

contrast-ratio above 3:1. Thus, the survey results of the test route indicate well-maintained roads with 

good condition of the line-markings.  

 

The Machine Vision (MV) performance of the Vehicle X showed that the vehicle was unaffected by the 

encountered driving conditions as the vehicle detected the lane markings 100% of the time. However, 

Vehicle Y was able to detect the lines only 57% of the time. The statistical analysis shows that Vehicle 

Y’s MV performance is dependent upon various factors. First, it was found that vehicle speed above 

80 Kmph results in better lane detection. Second, it was found that when the retro-refection of the 

line markings is below 150 mcd/lx/m2, or when there is a "Continuous(left)-Dashed(right)" 

combination of lines on the lanes, the lane detection percentage is significantly less. Further, the wet 

road conditions also severely affect the lane detection performance. Compared to night conditions, 

lane detection was significantly high during dusk and less during the daytime. The unexpected low 

performance of Vehicle Y’s MV for line marking with RL above 200 mcd/lx/m2 was further analyzed. It 
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was identified that this unexpected performance is due to the confounding effect of the Lane Width. 

It was found that the vehicle does not detect the line markings for the lanes with lane width below 3m. 

The possible reason for this was identified as the existing standards for lane width in Japan, which 

Vehicle Y could have adopted to distinguish between the different types of roads in order to distinguish 

the ODD in and ODD out situation. 

 

The lane positioning performance of the vehicle was measured using the Mean Lane Position (MLP) 

and Standard Deviation of Lane Position (SDLP). It was found that for both vehicles, MLP is affected by 

the type of line markings, width of the lane, weather and lighting conditions. However, the vehicles 

had opposite behaviour for a different type of line-markings; for example, when both right and left 

markings have continuous lines, the vehicle Y positioned itself closest to the lane centre while Tesla 

positioned itself towards the far left, as compared to other types of line-markings. Further, it was found 

that the MLP for Tesla for the undivided road is between -10 cm and -20 cm, while for the Divided 

Roads, the MLP is mostly between -10 cm and 0 cm. The unexpected behaviour of Tesla to position 

itself closer to the oncoming traffic on undivided roads is expected due to the difference in the colour 

of the line marking used by the Road Authorities to differentiate the traffic flowing in the same or 

opposite direction. Contrary to the previous research, it is found that MLP is not affected by the speed 

of the vehicles, and there is no significant difference in MLP between the straight and curved sections. 

The SDLP was mainly affected by the lane width and the visibility conditions (weather and lighting). 

 

An LKS (Lane-Keeping System) model was developed using the collected dataset to predict the 

performance of Machine Vision and Lane Positioning for a similar set of road geometry and different 

lighting and weather conditions. This LKS prediction model can help RAs (Road Authorities) to get 

insight into the LKS behaviour of the different vehicle manufacturers. It can also help them to evaluate 

the road infrastructure for readiness toward automated driving. Furthermore, the LKS model also 

answered the RQ2 that how LKS performance can be used to define the ODD (Operational Design 

Domain). As discussed in the previous chapter, the ODD should be defined by the vehicle 

manufacturers who design the feature and not by the testing agencies. Thus, results from the LKS 

prediction model are used to identify the different Level of Service (LoS) of the road infrastructure in 

the given conditions and not to define the ODD for LKS.  

 

The Dashboard sign detection tool, which was developed using the Deep Neural Network, enabled to 

precisely identify the various situations like lane departure for the analysis. The different lane 

departure and lane not detected cases were used to identify the hotspots where LKS can fail. The lane 

positioning tool precisely measured the lane position. Combining the results from these two tools, five 

different service levels were defined, level 0 and 1 accounting for the lane detection status and level 2 

to level 5 accounting for the lane positioning. The developed prediction model can be used to measure 

the LoS for an extensive network. However, the accuracy of the current prediction model is not very 

high (70% - 80%), the main reason being the less amount of data and the low number of features. 

 

Finally, to conclude, the methodology of this research resulted in identifying the factors affecting LKS, 

which could lead to the unsafe situation during automated lane-keeping, and the method was further 

extended in the form of a prediction model to identify such situations even for unseen conditions. 



 

 39  

8.1 Recommendations to Road Authority 

The technologies used by the vehicle manufacturers (OEMs) for Lane-Keeping System (LKS) will keep 

evolving as different OEMs take a different approach to better the performance of LKS. The Road 

Authorities (RAs) can keep up with the OEMs advancements if they constantly have data-driven 

dialogues. For example, the shortcoming identified in the functionality of two OEM vehicles can be 

discussed by the RAs with respective stakeholders to engage in a healthy conversation, which can set 

the momentum for future readiness of infrastructure (physical and digital) to facilitate automated 

driving. On the other hand, there is a technology push coming from the vehicle manufacturers (OEMs) 

towards the Road Authorities (RAs). This stresses the need for the RAs to make data-driven decisions 

and better position themselves in this dialogue. For example, in this project, the infrastructure is state-

of-the-art; however, the vehicle performance indicates that OEMs/ sensors/ hardware suppliers need 

to step up to this state-of-the-art service level. Using the methodology proposed in this project as a 

starting point, the RAs can now indicate the standards to which OEMs need to adhere to and at the 

same time also maintain the standards/ level of service that they communicate to the OEMs. 

 

The prime purpose of mandating the ADAS (Advanced Driving Assistance System) feature is to increase 

road safety and reduce traffic accidents. The Road Authorities strive to contribute to how the safe 

operation of such ADAS features can be ensured. However, changing the road infrastructure is not 

advisable to be taken based upon few practical studies. Various stakeholders such as RDW and CROW 

should be engaged in a dialogue to advise vehicle manufacturers to make their defined ODD 

(Operational Design Domain) available.  

 

This research identified that vehicles take decisions based upon the different lane markings and lane 

width. Therefore, it is advised to have uniform standards for the line marking across Europe, and this 

information then should be passed on to the vehicle manufacturers (OEMs). The uniform markings are 

also advised by the European Union Road Federation (ERF) and demanded by the OEMs. The earlier 

the decision to make the lines uniform across Europe is taken, its implementation can then be made 

as a part of the regular maintenance. Nevertheless, it is also important to align design standards within 

different regions with the same country; this research helps in identifying the infrastructural no-regret 

measures that can help with this both national and regional level. For example, the results of this 

research indicate the advantages of using continuous line markings on both sides of the lane for an 

undivided road.  It also highlights the impact of the sharpness and type of curves on vehicle 

performance. These are few areas that the road authorities could focus on in the near future.  

 

It is advised to start digitizing the infrastructure from now, and the maintenance information should 

be stored in a digital platform. This in turn, also can be an input for the technical standards for Digital 

Twins of the infrastructure (to facilitate automated driving), which is of high importance across road 

authorities in Europe. Furthermore, having digital information will open up the doors for many 

innovative solutions, such as the developed prediction model in this research.  The prediction model 

can be used by the Road Authorities to gain a better understanding of the functioning of the automated 

features, which is currently not shared by the vehicle manufacturers. More than using this prediction 

model to identify the changes required for the infrastructure, it is advised to start using it early in the 

shadow mode to understand the ongoing technological advancements better. 
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9 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

The preliminary analysis shows that Lane-Keeping System (LKS) struggles in executing curves with 

complex profile and high sharpness. However, due to insufficient data, the statistical analysis could not 

be performed, and neither the parameters related to the curve could be included in the prediction 

model. Therefore, it is recommended to conduct multiple driving sessions with varying speed on a 

route with different curves. 

 

The prediction model developed in this research obtained an accuracy between 70% and 80% on the 

unseen data. The primary reason to not obtain very high accuracy is the insufficient quantity and 

variety in the dataset. Current models use only five to six features and a limited dataset to classify the 

Lane-Keeping System (LKS) performance. While training on a dataset like these, as the loss function is 

minimized, there is always a problem of overfitting. As a result, the model will perform very well on 

the training data but fails to generalize to unseen data situations. To further improve the prediction 

model, more features need to be added by including different type of variables. In addition, the 

experiment test should be conducted for more days to increase the number of observations. It is also 

possible and highly recommended to use existing dataset such as HD (High Definition) Maps from 

TomTom to capture the road geometry and driving conditions. 

 

Chapter 7 discussed the potential of using the prediction model. The use can further be extended if 

the data is collected on a large scale directly from the automated vehicles, for example, through CAN 

bus. However, to know the reliability of the data, research is needed on the repeatability of the Lane-

Keeping System (LKS) performance. Unfortunately, it was not possible to do repeatability analysis in 

this research as the statistical tests require to drive for a minimum of three times on the same situation. 

 

While studying the factors affecting the lane-detection (MV) performance, it was identified that one 

of the prime reason for lane not detected was not due to some infrastructural shortcoming but due to 

the vehicle manufacturer’s decision or the limitation of the Lane-Keeping System being not operational 

for lane width below 3m. While studying many factors such as retro-reflection and Contrast Ratio, such 

data of lane width was filtered out to account for it. However, for many other factors, such as weather 

conditions and line type, it was not possible to filter out this data due to the scarcity in the dataset. 

Hence, there can be a confounding effect of lane width in such a situation. Second, the developed lane 

width calculation tool had inaccuracies in itself (section 5.8). Therefore, only a general trend in Mean 

Lane Position (MLP) and Standard Deviation of Lane Position (SDLP) for the different lane width was 

found in this research, and the details could not be analyzed further because of the error in lane width 

data. For future research, it is suggested to use a robust algorithm for distance calculation using the 

camera. The Mobileye can also be used as an alternative to measuring the Lane Position and Lane 

Width. Using two cameras on the side of the vehicle can also result in better accuracy, but the only 

issue is that they cannot be used during rainy conditions or on wet roads. 
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APPENDIX A – FACTORS AFFECTING THE LKS PERFORMANCE 

  

Parameter Import-
ance 

Reference to the paper on right side (Colour) Source 

Pavement 
Type/ 
Pavement 
colour 

  

LKS algorithm such as RALPH can fail in situations 
where there is a combination of pavement 
textures. 
 
An experimental study recommended that it is 
essential to understand the effect of varying 
pavement 

McCall & Trivedi 
[50] 
 
 
Pike et al. [35] 
  

Pavement 
Quality 

medium 

The literature review suggested that ruts, uneven 
road surface and cracks surface affect LKS 
performance. 
 
The practical study suggested that conflicting 
signals near the lane marking can confuse the MV 
system. 

Nitsche et al. [52] 
 
 
 
Pike et al. [35]  

Type of 
Horizontal 
Curve 

  

Different LKS algorithms can model road as linear, 
parabolic or spline, and the choice of it requires a 
trade-off between high stability or a high TLC. 
 
EuroNCAP test LKS on a S bend at 80 Km/hr 
 
Practical studies found that vehicle struggle in the 
second curve of the S-shaped curve. 

McCall & Trivedi 
[50] 
 
EuroNCAP [32] 
 
 
Tapsi et al. [51] 

Radius of 
Curvature 

medium 
medium 

The vehicle manufacturers (ACEA), on their part, 
prioritized the road curvatures 
 
Low curve radii affect LKS performance. 

EuroRAP & Euro 
NCAP [54] 
 
Schram [8] 
Nitsche et al. [52] 

Lane Width low 

The width of lane markings can be reduced as AVs 
will maintain an accurate lane position 
 
A field study in the Netherlands found that 
automated vehicles were inconsistent in their Lane 
Position 
 
ACEA said that too narrow or too broad a lane 
could impact the LKS performance. 

Farah et al. [55] 
 
 
Reddy et al. [28] 
 
 
EuroRAP & Euro 
NCAP [54]  

Lane 
Marking 
Colour 

  
ACEA advised the Road Authorities to harmonize 
the colour and dimensions of road across Europe 

EuroRAP & Euro 
NCAP [54]  
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Visibility of 
lane 

markings 

high 
high 

Empirical evidence suggests minimum retro-
reflection of 150 mcd/lx/m2 for markings 
 
Road Marking with retro-reflection of 150 
mcd/lx/m2 required across Europe 
 
Practical study confirms the same as above 

ERF [19] 
 
EuroRAP & Euro 
NCAP [54] 
 
Davies [37] 

Width of 
markings 

medium 

The practical experiment identified that 6-inch lane 
markings could improve the MV performance 
 
The experimental study suggest 6 inches marking 
better than 4 inch 
 
Mobileye and ATSSA recommended 12-15 cm lines 

Pike et al. [56] 
 
 
Davies [37] 
 
American Traffic 
Safety [57] 
  

Type of 
Pavement 
Marking 

high 

Recommended to install continuous lines to 
delineate the edge of the carriageway 
 
Lane line markings had lower detection confidence 
levels than comparable edge line markings 

EuroRAP & Euro 
NCAP [54] 
 
 
Pike et al. [35] 
  

Contrast 
Ratio 

  

Contrast ratio  3:1 is sufficient, but for better 
results, advised 4:1 ratio. 
 
An experimental study found that higher speeds 
and lower contrast reduced MV detectability  
 
Contrast Ratio significant for CV based LKS  
 
CR is most important during daylight hours. 

ERF [20] 
 
Pike et al. [58] 
 
Konstantinopoulou 
et al. [22] 
 
European 
Comission [59] 

Non-
uniformity 

medium 

The unification of markings across various 
countries will improve the reliability of MV 
 
Cross border difference affects LKS performance 
 
For ML-based LKS, uniformity is more important 
than contrast ratio 

ERF [20] 
 
 
Nitsche et al. [52] 
 
Konstantinopoulou 
et al. [22] 
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APPENDIX B – TEST ROUTE  

 

Given below is a sample of the various parameters measured using the Street Smart before finalizing 

the test route to ensure that test vehicle are exposed to various situations. 

 

Table 19 Preview of the route and calculations using Street Smart 

 

 

 

The route broken into sections for the measurement of retro-reflection was required to see the 
variations of the vehicle's performance across different Provincial roads. 
 

Table 20 Segmented Route for recording the age of the road and RL measurement (confidential) 

 

APPENDIX C – MEASUREMENT FOR CAMERA CALIBRATION 

The figures below show the measurements that were taken before starting the drive for the Vehicle Y 

vehicle. Similarly, the measurements were also recorded for Vehicle X. 

 

Figure 22 Measurements of camera mountings and calibration board distance (confidential) 

Figure 23 (a) Vehicle measurements (b) calibration board measurements (confidential) 
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Median Shoulder Curb Profile Width L Width R

Pavement 

Marking 
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Pavement 

Marking 
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Condition
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Marking 

Remanant

1 N236 Yes - Dark - S Curve Sharp 3.36 Grass No No Flat 11 14 LL C S EL D S Dirty No

2 N236 No
Shadow 

trees
Mid - Circular Sharp 2.99

20 cm 

space
No No Flat 12 15 EL C D EL D S Good No

3 N236 No
Shadow 

trees
Mid Straight - 3.03
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space
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joint

Straight - 2.96 No

Grass 
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road 

surface

No - - - - - No lines No

1 N246 No Dark Circular Sharp 3.04
18cm 
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Grass 

adjoining  

road 

surface

No Flat 14 10 EL C D EL D S

Faded out

specially on 

curve

no

1 A10 Yes

Dark

+
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and new 

pavement

Straight 3.33 Gaurdrails
Yes - 

Asphalt
Gaurdrail 19 45 LL D S LL D S

New - 

Excellent
Yes
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outrmost 

lane
Light Straight 3.25 Gaurdrails

Yes - 

Asphalt
Gaurdrail 16 21 LL D S EL C S Ok No

1 A9 Yes
Middle 

Lanes
Light Straight 2.73

Concrete 

Barriers
No 13 11 LL D S LL D S Ok Yes

1 N247

Combinatio

n light and 

dark

Longitudn

al Cracks
3.05 No White 13 16

CL Double 

Broken

LE Double 

Continous

Black 

impressions
No

2 N247 Dark Patch 2.9 No White 10 10
CL Double 

Continous

LE Single 

Dashed 
Good No

3 N247 Dark - 3.12 No White 14 15
LL Single 

Dashed

LE Single 

Dashed 

Black 

impressions
No

1 A1 Light - 3.42 No White 13 21
LL Single 

Dashed

LE Single 

Continous 
Good No

1 N246 Dark - 3.03 No White 10 11
CL Double 

Continous

CL Double 

Continous

Worn out 

edges
No

2 N246 Dark - 3.08 No White 19 20
CL Double 

Continous

LE Single 

Continous 
Good No

1 N505 Light - 2.73 No White 9 11
CL Double 

Dashed

LE Single 

Dashed 

Worn out 

edges
Yes

Lane Line Continous Single

Edge Line Dashed Double

Horizional 

Alignment
Cross-section Roadway Pavement Markings

Particulars

Legends for 

Marking

Sample
Road 

Name

If 

Divided

Road Surface Type and 

Quality
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APPENDIX D – SOFTWARE USED 

 

Table 21 Software used for processing the data 

Sr 
No 

Software/ 
Program 

Name 
Description Links 

1 ShotCut  For synchronizing the videos of the GoPro 
https://shotcut.org/ 

2 
GoPro 

Telemetry 
Extractor 

Extracting the metadata from the 
recorded GoPro videos 

https://goprotelemetryextract
or.com/free/# 

3 QGIS  

For synchronization of the data from 
reflectometer, GoPro and Hectometer 
database 

GIS analysis 
https://qgis.org/en/site/forus

ers/download.html 

4 makesense.ai 
To prepare the labelled dataset for object 
detection model https://www.makesense.ai/  

5 Roboflow 
For Data Augmentation and analysis of 
the labelled dataset https://roboflow.com/ 

6 YOLOv5 
For developing an object detection model 
for recognising the Dashboard Signs 

https://github.com/ultralytics/
yolov5 

7 Google Colab 
Free GPU to reduce the training and run 
time for DNNs 

https://colab.research.google.
com/notebooks/intro.ipynb  

8 MATLAB 

For calculation of the MLP and SDLP from 
the GoPro Camera Data 
For building the prediction model based 
on NN architecture 

https://nl.mathworks.com/pr
oducts/matlab.html 

9 SPSS For statistical analysis 
https://www.ibm.com/produc

ts/spss-statistics 

 
  

https://shotcut.org/
https://goprotelemetryextractor.com/free/
https://goprotelemetryextractor.com/free/
https://qgis.org/en/site/forusers/download.html
https://qgis.org/en/site/forusers/download.html
https://www.makesense.ai/
https://roboflow.com/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://nl.mathworks.com/products/matlab.html
https://nl.mathworks.com/products/matlab.html
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
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APPENDIX E – DASHBOARD SIGN DETECTION TOOL 

 

Table 22 Preparation of labelled dataset for YOLOv5 (Vehicle Y) 

 

 

 

 

 

Figure 24 Tracking Loss Function for Training and Validation sets 

 

 

 

Figure 25 Output of the Dashboard Sign Detection tool (Confidential) 

 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Labels/Images Presence %ge

AutoSteer - Active 59 93 119 143 149 149 32% 13%

AutoSteer - Standby 32 52 101 114 153 153 33% 14%

Indicator - Left 4 17 21 21 36 38 8% 3%

Indicator - Right 7 18 27 27 41 42 9% 4%

ProPilot - Active 92 144 172 172 185 185 39% 16%

ProPilot - LDw 1 5 39 70 104 105 22% 9%

ProPilot - Standby 64 88 91 91 111 111 24% 10%

VID - Lanes Detected 58 90 102 104 110 110 23% 10%

VID - Lanes Not Detected 33 52 75 77 86 87 19% 8%

VID - Left LDW 1 3 35 41 46 46 10% 4%

VID - Right LDW 0 2 9 35 67 69 15% 6%

Background only 0 0 0 0 0 30

Grand Total 351 564 791 895 1088 1125

Total Images 160 244 325 362 439 469

Final Data Health - Round 6
Label Name

Aggregate of count of Labels
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Figure 26 Confusion Matrix for evaluation of YOLOv5 accuracy (Vehicle Y) 

 

For Vehicle Y Dashboard, there were 11 classes, and all of them were tracked individually, using this 

Matrix. It tells us that how often one class is falsely predicted as another class. So, in an ideal situation, 

where no class is confused with another class, the confusion matrix would be an Identity Matrix with 

‘1’ on the diagonal and ‘0’ elsewhere. 

 

 

Figure 27 Signs to be detected from Vehicle X Dashboard for analysis of the data (confidential) 

 

Table 23 Final Scenarios for Vehicle X (confidential) 

 

 

Figure 28 Output of the Dashboard Sign Detection tool (confidential) 
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APPENDIX F – WEATHER STATION DATA 

 

Table 24 Weather Station data - Amsterdam Schiphol Netherlands [60] 

 

 

APPENDIX G - FRONT CAMERA DATA PROCESSING 

 

 

Figure 29 Lane Width and Lane Position calculation using ERFNet (confidential) 

 
 

 
Figure 30 Contrast Ratio calculation 

 
 

 
Figure 31 Classification of lane line-markings  
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APPENDIX H – SYNCHRONIZATION OF THE DATA FROM FOUR CAMERAS 

 

Table 25 Sample calculation for Synchronization of videos for Vehicle Y Day1 Session1 

 

 

Table 26 Hand calculated Video Synchronization Matrix 
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APPENDIX I - MACHINE VISION PERFORMANCE (CONFIDENTIAL) 

 

 

Figure 32 Distribution of (a) Lane Width (b) Contrast Ratio (confidential) 

Figure 33 Machine Vision Performance (confidential) 

 

The standby scenario in the case of Vehicle X does not mean that lanes are not detected. Hence, the 

overall lane detection percentage for Vehicle X is 99.9%. For simplification, it was considered that 

Vehicle X detects 100% of the lanes throughout the route. 

 

 

Figure 34 Distribution of different retro-reflection classes within each Road (confidential) 

 

Figure 35 Age of the Road vs Retro-reflection of line markings (confidential) 

 

 

Table 27 Retro-reflection vs Lane Detection 

 

 

 

Table 28 Logistic Regression Model for Contrast Ratio vs Lane Detection for Vehicle Y 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Contrast RL -,462 ,182 6,464 1 ,011 ,630 ,441 ,900 

Constant 3,374 ,751 20,202 1 ,000 29,208   

a. Variable(s) entered on step 1: Contrast RL. 

 



 

 54  

 

 

Table 29 Lane Width vs Lane Detection 

 
 

 

 

Table 30 Type of line marking vs Lane Detection 

 
 

 
 

 

Figure 36 GIS analysis for Lane Width vs Lane Detection (Vehicle Y Day1) (confidential) 
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Figure 37 GIS Analysis on Provincial Road N244 (Day1) (confidential) 

 

Table 31 Weather vs Lane Detection 

 
 

 

Table 32 Lighting Condition vs Lane Detection 
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Table 33 Lane Detection vs Divided/Undivided Roads 

 
 

 
 

 

Table 34 MV performance excluding confounding variables Lane Width and Marking Type 
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APPENDIX J – LANE POSITIONING PERFORMANCE 

 

 

Figure 38 Overview of the MLP and SDLP for the complete test (confidential) 

 

 

 

 

Figure 39 Q-Q plot to check the assumption of Normality for MLP (Vehicle Y) 

 

Table 35 Test to check the Normality in MLP dataset (Vehicle Y) 

 
 

 
Table 36 Test to check the Normality in MLP dataset (Vehicle X) 

 

 

The Whisker-Box plot indicates the variation of MLP across the different line markings, and the 

pairwise comparison chart indicates if those variations are statistically significant or not. The blue lines 

in the pairwise comparisons indicate the significant difference amongst the two groups of lane line-

markings. The green line means that the difference is not significant. The difference in the value of 

rank shows the significance of the difference between the two categories. 
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Figure 40 Variation in MLP for different lane line markings for Vehicle Y Day 1 

 

 

 

Figure 41 Variation in MLP for different lane tine markings for Vehicle X Day 1 

 

Kruskal-Wallis test produces a P-value greater than 0.05 in each of the cases to check the association 

of the line marking type with SDLP for Vehicle Y and Vehicle X, except for Vehicle X Day 2 (table 36), 

the P-value is below 0.05. Since the P-value of 0.04 is not highly significant (P<0.001), it is not 

considered, and the overall conclusion is made that SDLP does not vary amongst the different type of 

line-markings. 

 

 

Table 37 Kruskal-Wallis Test for SDLP vs line marking type for Vehicle X Day2 

Null Hypothesis Sig. Decision 

The distribution of SDLP is the same across categories of Line Type. 0.041 Reject the null hypothesis. 
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Figure 42 (a) Mann-Whitney test for SDLP in Vehicle X (b) Straight and Curved SDLP (confidential) 

Figure 43 Curves executed through Automated Driving (confidential) 

 

 

 

Figure 44 Kruskal-Wallis Test Output for Lane Width vs Lane Position for Vehicle Y 

 

 

 

Table 38 Test output for checking the variation of Lane Position in Vehicle X 
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Figure 45 Variation of Lane Position across different lane width for Vehicle X 

 

 

 

Figure 46 Effect of weather on Lane Positioning of Vehicle Y 
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Figure 47 Effect of weather on Lane Positioning of Vehicle X 

 

 

 

Figure 48 Effect of Lighting Conditions on Lane Positioning of Vehicle Y 

 

 

 

Figure 49 Effect of Lighting Conditions on Lane Positioning of Vehicle X 
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Figure 50 Mann Whitney test for Vehicle X Performance on Divided and Undivided Roads 

 
 

 
Figure 51 Training loss and accuracy for MV prediction model (Vehicle Y) 
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Figure 52 Training loss and accuracy for MLP prediction model (Vehicle X) 

 

 
Figure 53 Training loss and accuracy for SDLP prediction model (Vehicle X) 
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Figure 54 Confusion matrix for MV prediction model (Vehicle Y) 

 

 
Figure 55 Confusion matrix for MLP prediction model (Vehicle X) 

 

 
Figure 56 Confusion matrix for SDLP prediction model (Vehicle X)  
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APPENDIX K – VISUALIZATION OF RESULTS  

 

 

Figure 57 Day 1 Level of Service for LKS (a) Vehicle Y (b) Vehicle X (confidential) 

 

 
Figure 58 Interface to interact with Prediction Model 

 
 

Figure 59 Prediction Model Output 1 (confidential) 

 

 

APPENDIX L - CONFIDENTIAL 

 

 

Figure 60 Example of dataset collected by Vehicle X fleet for training DL-based algorithms 
(confidential) 

Figure 61 Using data from Vehicle X fleet for continuous training of Neural Networks (confidential) 

 

Table 39 Different type of road classification in xx  (confidential) 

 

Table 40 Lane Width for different type of roads in xx  (confidential) 
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